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ABSTRACT 

Failing Onsite Wastewater Treatment Systems (OWTSs) have been identified as a 

significant threat to Awater quality, discharging significant amounts of inadequately 

treated sewage effluents. When developing a Watershed Protection Plan (WPP), OWTS 

has often been difficult to assess due to technological, institutional and economic 

constraints. In Texas, contamination from bacterial pathogens is the primary source in 

water quality concern. According to the 2012 Texas Water Quality Inventory, the 

Dickinson Bayou watershed is listed as “impaired”, due to bacteria. Since the bacterial 

levels in this watershed are not meeting the State’s recreation standards, actions are 

needed to improve the water quality. Poorly designed and maintained OWTS, along with 

inappropriate site characterization are major contributors of the bacteria in this 

watershed. The majority of the OWTS located in Dickinson Bayou are located in poorly 

drained soils increasing the likelihood of contaminated runoff into the surface waters. A 

prediction tool was developed using Geographic Information System (GIS) to assess 

failing OWTS and the potential E. coli contamination to surface waters. This tool will 

help identify different parameters affecting E. coli concentration in streams, which 

include: rainfall conditions, spatial connections of OWTS to stream network, age of the 

OWTS, and the failure rate of the OWTS.  

A spatially-explicit algorithm was developed to estimate E. coli concentrations in 

watersheds resulting from failing OWTS, and implemented using ArcGIS 10. Spatial 
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analysis of accumulated E. coli concentrations in streams was made possible by GIS. 

The algorithm was automated using python programming language, ArcPy, to simulate 

E. coli concentrations in surface waters in a coastal Texas watershed for different rainfall 

conditions.  

 

This automated tool simulated potential E. coli loads and concentrations from failing 

OWTS across the Dickinson Bayou watershed in Texas. The tool was validated using 

observed runoff data in the Dickinson Bayou watershed. The highest potential E. coli 

loads were identified and the areas of concern were highlighted to more effectively 

apply Best Management Practices (BMPs). Results concluded that precipitation played 

a significant role in routing the E. coli loads to streams in the watershed. The potential 

E. coli concentration in streams decreased with increasing rainfall amount. Also, the 

simulation results showed the number of household size and the number of OWTS 

plays a major role in E. coli contribution in the watershed. The age of the OWTS and 

the hydrologic connectivity of those failing systems should be considered while 

simulating the E. coli concentrations in the stream. Regulators, planners, and 

watershed managers to make timely management decisions can use results from this 

automated tool. 
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CHAPTER I 

INTRODUCTION  

 

1.1 Introduction 

Pathogens are the leading cause of impairment in US water bodies (Figure 1.1). 

Waterborne pathogens that cause diseases are of critical concern for water resource 

managers. Once pathogens enter a water body, pathogens can infect humans through 

skin contact, ingestion of water, and through contaminated fish and shellfish (Arnone et 

al., 2007). In Texas, Escherichia coli (E. coli) is used as an indicator organism of fecal 

contamination. When the concentration of E. coli exceeds the regulatory standards, the 

stream is listed as “impaired” as a result of fecal contamination. To address this issue of 

impairment in the water bodies of Texas, a simple and accurate model is needed that 

would simulate the bacterial load and transport for developing the Watershed Protection 

Plan (WPP) or Total Maximum Daily Load (TMDL). The TMDL is the maximum load 

of a pollutant, resulting from point and nonpoint sources within a watershed, meeting the 

regulatory water quality standards (TCEQ, 2009). Developing and implementing a 

TMDL is very costly; the average national cost per water body has been estimated 

around $52,000, and can typically range from $26,000 to more than $500,000 depends 

upon the complexity and the extent of the severity (USEPA, 2001b). A substantial 

amount of time is also spent when developing a TMDL to identify the potential sources 

and allocate loads.  
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Figure 1.1 Leading pollutants/stressors in impaired rivers and streams (TCEQ, 2009). 

  

 

When developing Watershed Protection Plans (WPPs) or TMDLs, On-site wastewater 

Treatment Systems (OWTS) have often been difficult to assess due to technological 

and economic constraints (Ursin et al., 2008). Onsite Wastewater Treatment Systems 

(OWTS) are widely used in residential areas in which houses are not connected to 

centralized wastewater treatment systems. Presently there are at least three types 

OWTS that are being used: conventional septic systems, aerobic treatment units 

(ATU), and the mound systems. The conventional septic system utilizes a septic tank, 

a soil absorption field, gravity to move wastewater through this system, and treats 

wastewater in the process (Gregory et al., 2013). The aerobic treatment units (ATU) 

have a spray distribution that pretreats the waste using aerobic digestion, settling, and 

disinfection to spray the treated wastewater (Gregory et al., 2013). The mound system 

uses similar mechanisms as the conventional system with a presence of mounding soil 
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on the surface, which allows the drainpipes to be buried in soil. This system can be 

used to alleviate unsuitable conditions in the leach field (Forbis-Stokes et al., 2013).  

Effectiveness of these systems is highly dependent on the soil type and depth to the 

groundwater table (Forbis-Stokes et al., 2013). 

 

Soil based OWTS serve between 20 and 25% of the households in the United States 

(US Census Bureau 2007; USEPA, 2013). If these systems are properly executed and 

maintained, they can prove to be a very valuable source for protecting public health, 

and maintaining economic vitality in the community. Unfortunately, in most cases, 

once systems are installed, they are generally forgotten about (USEPA, 2013). 

Around 7% of the housing units use OWTS in larger communities of more than 

10,000 people, and the remaining 93% are connected to the public sewer. However, 

in small communities of less than 10,000 people, around 61% of the housing units use 

OWTS for their wastewater disposal (US Census Bureau, 2011). 

 

The rise in urbanization along with improper site characterization and maintenance 

has resulted in failing OWTSs in several states (Carroll et al., 2005).  Failing OWTSs 

have been identified as a significant threat to water quality, discharging significant 

amounts of inadequately treated sewage effluent (Meile et al., 2009). This 

contamination in groundwater and surface water implies direct discharge from the 

OWTS to the waters, or a failure in the system because of poor design, location, age, 

soil type, and the lack of its maintenance (Withers et al., 2011). Contamination of 
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water resources from OWTS is of crucial concern because of the health risks they 

pose and the degradation of drinking and recreational water resources. This is due to 

the high concentrations of nutrients and potential pathogens (Reneau et al., 1989, 

Wilhelm et al., 1994 and Kay et al., 2008). Other effects of this contamination include 

surfacing effluents and mal odors. Partially treated wastewater can reach nearby 

streams and rivers or groundwater, resulting in contaminating source waters 

(Vedachalam et al., 2012). 

 

To effectively manage risks associated with fecal contamination caused by OWTS, 

identifying the potential sources is crucial (Reed et al., 2001, Teague et al., 2009).  A 

potential reason for the rise in fecal contamination in water resources in several water 

sources is failing OWTS. In the 1998 report of the National Water Quality Inventory 

(NWQI) to Congress, OWTS was the second most cited source for water contamination, 

citing “improperly constructed and poorly maintained septic systems are believed to 

cause substantial and widespread nutrient and microbial contamination to ground water” 

(US EPA 1998, 1999). 

 

The use of GIS as an integrated framework for applying hydrological models has 

become a standard procedure tool to study the spatial variability of water (Cesur et al., 

2007, Martin et al., 2005). The adaptability of GIS to process spatial data and its ability 

to execute analyses makes it the ultimate platform to be used in conjunction with 

hydrological models (Rios et al., 2013). The scope and scale of water related problems 
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make GIS an extremely powerful tool for developing solutions (Maidment et al., 2002). 

The use of Geographic Information System (GIS) has become very popular in analyzing 

and modeling the potential contamination that OWTS may impose on the water 

resources. 

 

A regression model combined with GIS was used to assess the relationship between 

fecal contamination and land use in a small and developed estuary near Georgetown, 

South Carolina. This study also showed that closer proximity of the OWTS in the study 

area to the hydrological network had higher fecal contamination (Kelsey et al., 2004). 

Rios et al. (2013) developed ArcNLET (Nitrate Load Estimation Tool), in GIS platform 

to stimulate nitrate loads from septic tanks to surface waters. ArcNLET is an “easy-to-

use software”, that can be used to conduct screening-level-analysis (Rios et al., 2013). In 

Alabama, GIS was used to assess the status of OWTS in the area (He et al., 2011). From 

the results of the study, two strategies were developed to reduce the risk on public health 

from the malfunction in OWTS; to expand the sewer service to cities with high-risk and 

to reduce costs of repairs and replacements for the system (He et al., 2011). 

 

The Spatially Explicit Load Enrichment Calculation Tool (SELECT) was developed to 

help with the developing the Watershed Protection Plans (WPPs) and specifically 

applied to estimate potential E. coli loads in different watersheds in Texas (Teague et al., 

2009, Borel et al., 2012b). The SELECT was automated to characterize E. coli loads 

from various point and non-point sources, including OWTS (Riebschleager et al., 2012). 
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SELECT is an automated Geographic Information System (GIS) tool that can be applied 

to a watershed of interest to assess potential E. coli loads and concentrations based on 

spatial factors such as population of different sources, suitable land use, and soil type 

(Teague et al., 2009, Borel et al., 2012a, Riebschleager et al., 2012). The module to 

estimate the potential E. coli contribution resulting from OWTS is not well executed and 

did not include all the relevant factors (Teague et al., 2009, Borel et al., 2012a, 

Riebschleager et al., 2012). It is therefore pertinent to develop a standalone GIS tool to 

estimate potential E. coli loads resulting from OWTS based on the location of the 

OWTS, population density, slope, land use, and soil type. This tool should also include 

the rainfall-runoff relationship to calculate the potential E. coli concentration within a 

watershed and highlight areas of concern to implement best management practices 

(BMPs). In addition, the automated tool developed by (Teague et al., 2009, Borel et al., 

2012b, Riebschleager et al., 2012) is coded in Microsoft Visual Basic for Applications 

(VBA). According to ESRI, ArcGIS 10.0 is the final release of Microsoft Visual Basic 

for Applications (VBA), and beyond this release, they will no longer support. ESRI 

strongly recommends users to rewrite their programs and tools using the currently 

supported development language, which is Python. Therefore, development of the 

automated tool in this research was done using the programming language Python.  The 

development of such an automated tool in ArcGIS 10 using ArcPy and the application of 

the tool to estimate potential E. coli loads resulting from different scenarios in a coastal 

Texas watershed was the main objective of this research work.  
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1.1. Objectives 

The overall objective of the study was to develop a GIS tool to estimate potential E. 

coli loads in a watershed resulting from failing OWTS. Ultimately, when combined with 

a rainfall-runoff model, the concentration of E. coli transported into the stream can be 

predicted.  

 

The specific objectives were to: 

(1) develop a rainfall-runoff model in ArcGIS 10, 

(2) develop a spatial tool in ArcGIS 10 to calculate the potential accumulated E. 

coli concentrations in a watershed and to validate the runoff model using 

observed data, and 

(3) apply this GIS tool to the Dickinson Bayou watershed in Texas and run 

different scenarios including: different rainfall conditions and failure rates 

of OWTS based on the age of the OWTS. 
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CHAPTER II 

ESTIMATING E. COLI CONCENTRATIONS FROM FAILING OWTS IN 

DICKINSON BAYOU WATERSHED 

 

2.1. Introduction 

In Texas, contamination from bacterial pathogens is the primary surface water quality 

concern (Teague et al., 2009; USEPA, 2008). Escherichia coli (E. coli) bacterium is 

used as an indicator organism to indicate fecal contamination. The E. coli standard set by 

the TCEQ for the Dickinson Bayou Tidal is 35 CFU/100mL and for the Dickinson 

Bayou above tidal is is 126 CFU/100 mL (TCEQ, 2014). To address E. coli 

contamination in watersheds the U.S EPA published recommendations which included 

identifying and characterizing the sources, assessing the contribution from each source, 

and estimating the E. coli load from each contributing source (USEPA, 2001).   

 

Spatially Explicit Load Enrichment Calculation Tool (SELECT) is an automated 

Geographic Information System (GIS) tool that can be applied to a watershed of interest 

to assess potential E. coli loads and concentrations based on spatial factors such as 

population of different sources, suitable land use, and soil type (Teague et al., 2009, 

Borel et al, 2012b, Riebschleager et al, 2012). The module to estimate the potential E. 

coli contribution resulting from OWTS is not well executed. Moreover, SELECT did not 

include all the relevant watershed characteristics required to assess E. coli contamination 

resulting from failing OWTS (Teague et al., 2009, Borel et al., 2012b, Riebschleager et 
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al., 2012). It is therefore pertinent to develop a standalone GIS tool to estimate potential 

E. coli loads resulting from OWTS based on the location of the OWTS, population 

density, slope, land use, and soil type of the each individual location of the OWTS. This 

tool should also include the rainfall-runoff relationship to calculate the potential E. coli 

concentration within a watershed and highlight areas of concern to implement best 

management practices (BMPs). In addition, the automated tool developed by (Teague et 

al., 2009, Borel et al., 2012b, Riebschleager et al., 2012) is coded in Microsoft Visual 

Basic for Applications (VBA). According to ESRI, ArcGIS 10.0 is the last release of 

Microsoft Visual Basic for Applications, and they will no longer support VBA beyond 

this release. ESRI strongly recommends users to rewrite their applications using 

currently supported development language, Python (Python, 2.2). Therefore, 

development of the automated tool in this research was done using the programming 

language Python.  The development of such an automated tool in ArcGIS 10 using 

ArcPy and the application of the tool to estimate potential E. coli loads resulting from 

different scenarios in a coastal Texas watershed are presented in this manuscript.  

 

2.2. Study Watershed: Dickinson Bayou 

According to the 2012 Texas Water Quality Inventory, the Dickinson Bayou Watershed 

(Figure 2.1) is listed as “impaired”, which means that it has elevated levels of bacteria 

that have been observed through consistent monitoring.  Surface water samples have 

been collected from the Dickinson Bayou since the early 1970s, and currently, it is not 

meeting the TCEQ standard for bacteria levels in surface water.  The State of Texas 
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requires that Dickinson Bayou meet and maintains recreational water quality standards.  

Poorly designed and maintained OWTS, along with inappropriate site characterization 

are major contributors of the bacteria in this watershed. Majority of the OWTS located in 

Dickinson Bayou are located in poorly drained soils increasing the likelihood of 

contaminated runoff into the surface waters (TCEQ, 2012, Dickinson Bayou Partnership 

et al., 2012). 

 

 

 

Figure 2.1 Spatial location of Dickinson Bayou watershed, Texas.  
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The Dickinson Bayou watershed is located southeast of Houston, Texas in the San 

Jacinto-Brazos Coastal Basin (Figure 2.1). Dickinson Bayou (Figure 2.2 and 2.3) is a 

coastal stream, which consists of tidal and non-tidal water that drains in to the Dickinson 

Bay. Entire cities of Algoa and Dickinson, and portions of League City, Friendswood, 

Texas City, Alvin and Santa Fe, are included within the Dickinson Bayou watershed 

(Figure 2.2). The Bayou originates north of the city of Alvin, in the northwestern 

Galveston County, with a latitude of 29°29' N and a longitude of 95°14' W, and the river 

flows to its mouth which is on Dickinson Bay and Galveston Bay, which is just south of 

San Leon, with a longitude of 29°28' N and latitude of 94°57' W. It has a total length of 

around 38.6 km with a drainage area of 258.2 km2. It has a maximum width of 

approximately 11.3 km.  The population density of this watershed was estimated to be 

66,500 people with 29, 610 houses (U.S Census Bureau, 2010).  Approximately a third 

of upper segment is part of the Brazoria County and consists of around 1% of the entire 

county area. The rest of the watershed lies in the Galveston County, which consists of 

11% of the entire county area. It is important to note that even though the population of 

Brazoria and Galveston are close in comparison (Table 2.1), the population density of 

Galveston is more than three times greater than that of Brazoria and based on 

projections, the population in both counties are predicted to increase (TCEQ, 2012). 
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Table 2.1 Total population and density for the counties where Dickinson Bayou is 
located.   
 

County Name 
2000 U.S 

Census 

2000 Population 

Density (per 

square mile) 

2010 

U.S Census 

2010 Population 

Density (per square 

mile) 

Brazoria 241,676 174 313,166 226 

Galveston 250,158 627 291,309 732 

 

 

Dickinson Bayou provides local residents with recreational activities such as fishing, 

boating, canoeing, water skiing, and other such water activities. The Bayou is also used 

for commercial shrimping and barge traffic occasionally. The distribution of population 

in the Dickinson Bayou is skewed towards the urban areas, mainly in the northeastern 

portion of the watershed, as well as the development in the southern portion near Alvin 

and Santa Fe (TCEQ, 2012). The average elevation of the watershed is around 11 meters 

above the mean sea level. The climate in the Dickinson Bayou watershed is humid, with 

an average annual rainfall of 122 cm (Dickinson Bayou Partnership, 2012).  

 

This watershed has approximately 4,565 OWTS. (Figure 2.4) (Dickinson Bayou 

Partnership, 2012).  The southern portion of the watershed has concentrated OWTS as 

compared to northern portion. These OWTS are mainly anaerobic systems (3,243) and 

ATU (1,322) (Dickinson Bayou Partnership, 2012). 
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Figure 2.2 Dickinson Bayou watershed with cities, counties, and streams. 
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Figure 2.3 Dickinson Bayou subwatersheds delineated using BASINS along with the cities, counties, and streams. 
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Figure 2.4 Locations of Onsite Wastewater Treatment Systems (OWTS) in Dickinson Bayou watershed (Dickinson Bayou 
Partnership, 2012).



 
 

16 

Dickinson Bayou is extensively urbanized in certain areas (Figure 2.5, Table 2.2).  

Located in the Gulf Coast prairies and marshes ecological area of Texas, the vegetation 

consists primarily of Hay/Pasture, agriculture and some developed land (open space and 

low intensity).  The development in this watershed is light to medium industrial. 

Agricultural uses prevail in the western portion of the watershed (Texas Stream Team 

River Systems Institute, 2010). The majority of the watershed’s landuse is currently 

cultivated lands followed by low intensity developed land. Cultivated lands and 

grasslands account for approximately 25% and 16%, respectively (Table 2.2). 

 
 
 

 

Figure 2.5 Dickinson Bayou watershed land use (NLCD, 2006). 
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Table 2.2 Land use distribution in Dickinson Bayou watershed. 

Land Description Land Use # 
Area (Square meters) % Of watershed 

Cultivated Land 1 67,542,739 25.91 

Developed, Low Intensity 2 58,757,752 22.54 

Grassland 3 42,543,323 16.32 

Developed, Open Space 4 32,011,765 12.28 

Woody wetland 5 20,776,356 7.97 

Developed, High Intensity 6 11,834,969 4.54 

Herbaceous Wetland 7 8,550,374 3.28 

Forest 8 6,517,053 2.50 

Open water 9 6,282,439 2.41 

Bare/Transitional Land 10 5,865,348 2.25 

Total  260,682,128 100% 

 
 
 
 
 
When precipitation occurs, the initial drops of water are intercepted by the vegetation, 

which is referred to as interception storage. As it continues to rain, the water that reaches 

the ground then infiltrates into the soil until the soil has reached its infiltration capacity. 

When rainfall intensity exceeds the infiltration capacity of the soil, the process of runoff 

occurs. One of the factors that have a direct impact on the occurrence of runoff volume 

is the soil type. Different soil types have different infiltration capacity based on the 
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porosity of that particular soil. Highest infiltration occurs in sandy soils, and smaller 

infiltration capacity is observed in clay or loamy soils. Soils were original assigned to 

hydrologic soil groups (HSGs) based on their characteristics such as their porosity and 

their runoff potential. HSGs ranges from A to D, where soils with HSGs of A represent 

soils that have low runoff potential, these soils typically have 90 percent sand and 10 

percent clay.  Soils with HSGs of D represent soils that have high runoff potential, water 

movements through these soils are very restricted; these soils typically have less than 50 

percent of sand, 40 percent clay and have very clay like structures. The soils in 

Dickinson Bayou mainly consist of HSGs of D, which causes the high surface water 

runoff in this watershed (Figure 2.6).  Soil data were obtained from the Natural Resource 

Conservation Service (NRCS) Soil Survey Geographic (SSURGO) Database (2013). 



 
 

19 

 

Figure 2.6 Spatial distribution of various hydrologic soil groups (A, B, C, and D) in the Dickinson Bayou watershed.
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2.3. Spatially Explicit Methodology 

The conceptual framework for this tool includes delineating the subwatersheds in a 

watershed to spatially aggregate the E. coli loads resulting from failing OWTS. The 

spatial E. coli loads will be estimated using the location of OWTS in the watershed, 

population density, rainfall amount, soil type, slope, and E. coli load in the untreated 

sewage. Once the potential E. coli loads are estimated, rainfall-runoff relationship will 

be used to calculate the E. coli concentration in the surface waters. The rainfall-runoff 

relationship will be established using NRCS Curve Number (CN) approach.  

 

This spatial tool was developed using the Spatial Analyst extension and the ArcHydro 

extension within ArcGIS 10 (ESRI, Redlands, CA) in ArcPy programming language. 

The watershed delineation was done using the Better Assessment Science Integrating 

point & Non-point Sources (BASINS 4.0, USEPA, 2012). The watershed was divided 

into subwatersheds based on the elevation and changes along the hydrology. This was 

done in order for the E. coli loads to be aggregated to for our results (Figure 2.3). Next, 

the subwatersheds were divided into a raster grid of 30 m × 30 m cells. Each cell 

location was assigned a specific E. coli load based on the discharge from each failing 

OWTS present in that cell location. The OWTS locations (Figure 2.4) were obtained 

from the Dickinson Bayou Watershed Partnership, led by the Texas A&M AgriLife 

Extension and the Sea Grant. Land use classification (Figure 2.5) and soils (Figure 2.6) 

were other GIS layers required to generate the CN grid. Table 2.3 represents a summary 
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of all the GIS layers used to do the analysis in this study to estimate the potential E. coli 

concentrations resulting from failing OWTS in the Dickinson Bayou watershed. 

 

This automated tool provides a graphical user interface (GUI) for the users. Users can 

adjust parameters for different scenarios specific to their watershed of concern that 

include: location of the failing OWTS, Antecedent Moisture Conditions (AMC) I/II/II, 

precipitation amounts, population, slope, and the processing extent to which the user 

wants to study. This tool will simulate potential bacteria loads and concentrations based 

on the parameters chosen. Before using this tool, a comprehensive understanding of the 

watershed is necessary to assess the contribution factors that influence the potential E. 

coli concentration in the watershed.  

 
 
 
Table 2.3 Spatial data sources and format used to predict potential E. coli load in 
Dickinson Bayou watershed 
File Format Data Source 

Digital Elevation Model (DEM) Raster 
 BASINS 4.0, U.S EPA 

Census block Shapefile U.S Census Bureau, 2010 

Soils Shapefile SURRGO, 2013 

Soil properties Tabular SURRGO, 2013 

Landuse Raster National Land Cover Dataset (NLCD) 
2006 

OWTSs Shapefile Dickinson Bayou Watershed 
Partnership, 2013 

Streams Shapefile  National Hydrography Dataset plus, 
BASINS 4.0, U.S EPA 
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2.3.1. Estimating potential E. coli concentration 

The potential E. coli concentration will be calculated using equation 2.1, developed by 

McElroy et al. (1976).  

C = Y / 𝑎 ∗  𝑅 ∗ 𝐴 …………………………….. (2.1) 

 

Where C is the E. coli concentration (cfu/mL), Y is the daily E. coli load (CFU), R is the 

daily runoff (mm), 𝑎 is the conversion factor (1×106), for the conversion from m3 to mL, 

A is the grid cell area (m2).  

 

The E. coli concentration was estimated by calculating the E. coli load and the runoff 

volume resulting from a given rainfall. The analyses were conducted at a 30 m × 30 m 

spatial resolution. To calculate the E. coli load (Y); Total number of households that use 

OWTS were determined using census data. Census data were obtained from 2010 census 

block (USCB, 2010). Based on the failing OWTS location, the density of the failing 

OWTS was calculated per raster cell. A constant toilet water use of 56 Lperson-1day-1 

(15 gal person-1 day-1) and a 10 x 106 CFU/100 mL of fecal coliform concentration was 

used to calculate the E. coli load resulting from failing OWTS (Table 2.4) (Teague et al., 

2009, Borel et al., 2012a).  

 

The watershed was delineated into 46 subwatersheds using BASINS (Figure 2.3) 

(BASINS 4.0, 2010). To convert the fecal coliform to E. coli, a conversion factor of 0.33 

fecal coliform to E. coli was used based on the US EPA’s regulatory standards in 
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recreational waters. The total E. coli load was calculated per person per day caused by 

the failing OWTS which were aggregated to a subwatershed level. This spatial 

aggregation can be used to identify the areas of potential concern of impairment due to 

bacteria resulting from failing OWTS. 

 
 
 
Table 2.4. Calculation of potential E. coli loads from OWTS (Teague et al., 2009, Borel  
et al., 2012a) 
 
Source E. coli Load Calculation 
 
 
OWTS 

𝐸𝐶1 = #𝑂𝑊𝑇𝑆𝑠 ∗  
10 ∗ 106𝑐𝑓𝑢

100 𝑚𝐿
∗  

15 𝑔𝑎𝑙
𝑝𝑒𝑟𝑠𝑜𝑛
𝑑𝑎𝑦

∗
𝐴𝑣𝑔 #

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑
∗

3758.2 𝑚𝐿
𝑔𝑎𝑙

∗ 0.33 
 
 
EC1 = E. coli load discharged from a failing OWTS 
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Figure 2.7 Flow chart illustrating the calculation of the contributing E. coli load and concentration. (a) Multiply runoff and 
household size to compute contributing load (b) Use equation 2.1 to calculate E. coli concentration (d) aggregate to 
subwatershed level (c) Compute flow direction (e) Compute flow accumulation using flow direction with contributing load as 
accumulation weight. 
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The inputs to calculate the E. coli concentrations were the previously calculated runoff 

volume and the DEM. The flow chart in Figure 2.7 illustrates the calculation of the 

contributing E. coli load and concentrations. Census data and the contributing load were 

used to calculate the contributing E. coli load in each OWTS (Figure 2.7 (a)).  Equation 

2.1 was used to calculate E. coli concentration (Figure 2.7 (b)).  The E. coli load was 

aggregated to subwatershed level (Figure 2.7 (d)). The E. coli concentration was 

accumulated using the Digital Elevation Model (DEM) of the watershed area, resulting 

in accumulated runoff (Figure 2.7(c)). The resulting grid shows the accumulation of the 

E. coli concentration going through each specific cell until the outlet of the watershed 

(Figure 2.7(e)). 

 

2.3.2. Estimating runoff volume in the watershed 

Curve Number (CN) grid was generated for Dickinson Bayou watershed, using a 

combination of the soil antecedent moisture conditions (AMCII), soil type and land use. 

The categories used to reclassify the landuse were defined based on the watershed and 

study of interest. Landuse for the Dickinson Bayou watershed was reclassified into seven 

categories: Water, Developed – open space, Developed – low intensity, Developed – 

medium intensity, Developed – high intensity, Forest, and Agriculture, according to the 

NLCD reclassification (Figure. 2.8, Table 2.5). By the combination of the land use and 

hydrological soil group data, standard NRCS curve numbers were assigned. NRCS curve 

numbers used were based on a normal antecedent moisture condition (AMC II). The CN 

was calculated using the HEC-GeoHMS extension, as well as the hydro extension in 
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ArcGIS 10 using an NRCS Curve Number Lookup Table (Table 2.6) (Soil Conservation 

Service, 1986). Curve Number for this watershed ranged from 71 to 92, where 71 

represents lowest runoff and 92 represents highest runoff potential (Figure 2.9).  Lower 

curve numbers represent very permeable soil and higher curve numbers represent less 

permeable soil. 

 
 
 
Table 2.5 Land use classification of Dickinson Bayou watershed (source: USGS Land 
Cover Institute (LCI), 2006). 
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Figure 2.8 Reclassification of the landuse in Dickinson Bayou used in generating curve number grid.
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Table 2.6 NRCS curve number lookup table (Soil Conservation Service, 1986) 
 

Land Use Type Hydrologic Soil Group 

Curve 
Number 
(AMCII) 

Open Water 

A NoData 
B NoData 
C NoData 
D NoData 

Developed, Open Space 

A 39 
B 61 
C 74 
D 80 

Developed, Low Intensity 

A 48 
B 66 
C 78 
D 83 

Developed, Medium Intensity 

A 57 
B 72 
C 81 
D 86 

Developed, High Intensity 

A 77 
B 85 
C 90 
D 92 

Forest 

A 30 
B 58 
C 71 
D 78 

Agriculture A 67 
 B 77 
 C 83 
 D 87 
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Figure 2.9 Curve number grid for the Dickinson Bayou watershed.
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The maximum soil water retention parameter (S) was calculated using the CN in mm 

(S):  

S = (25400/CN) - 254  ………………………………. (2.2) 

Where S is the maximum soil water retention parameter (mm) and CN is the curve 

number for the Dickinson Bayou watershed (Figure 2.9). 

 

The runoff volume in the streams was calculated using an input precipitation value 

(Figure 2.10). An automated tool was programmed in Python within ArcGIS 10.0 to 

calculate the runoff volume with an input of a precipitation value, and an S grid, which 

is calculated using the curve number grid. Precipitation values that were greater than the 

minimum precipitation required to induce runoff were used to calculate the runoff 

volume. 
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Figure 2.10 Flow chart illustrating the calculation of accumulated runoff volume. (a) Reclassify landuse grid (b) Input (a), 
curve number lookup table, and soil data (c) use equation 2.2 and 2.3 to convert CN grid to runoff grid, (d) Compute flow 
direction from DEM grid, (e) Compute flow accumulation from flow direction grid using the runoff volume grid as the 
accumulation weight.                         
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The runoff volume (Figure 2.10(a-e) was calculated using SCS CN approach using the 

following equation: 

        Q = [(P - I𝑎)2 / (P - I𝑎 + S)] * A …………………………….. (2.3) 

where, Q is total runoff (m3), P is the total precipitation (mm), I𝑎 is the initial abstraction 

(stored, intercepted, and infiltrated water) (mm), S is the maximum soil water retention 

parameter (mm), I𝑎 is approximated to be 0.2S, and A is the area of a grid cell (m2).  

 

To calculate the curve number the landuse was first reclassified (Figure 2.10 (a)). Next, 

the curve number grid was converted into an S grid using Equation 2.2 (Figure 2.10(b)) 

using the three input data: reclassified landuse, curve number lookup table, and soil data.  

Runoff volume was then calculated using Equation 2.3 to calculate the runoff depth in 

each cell. The resulting runoff depth per cell was converted into runoff volume by 

multiplying by the cell area, 900 m2 (Figure 2.10(c)). Equation 2.3 requires P to exceed 

the 0.2 S grid, before any runoff is generated; therefore only precipitations values that 

were greater than the minimum precipitation required to induce runoff were used to 

calculate the runoff volume. The runoff was accumulated using the Digital Elevation 

Model (DEM) of the watershed area, resulting in accumulated runoff (Figure 2.10(d)). 

The resulting grid shows the accumulation of the runoff volume going through each 

specific cell until the outlet of the watershed (Figure 2.10(e)). 

 

The runoff volume was calculated using different rainfall amounts (Table 2.7). The 

minimum amount of rainfall required to produce runoff in the watershed is S multiplied 
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by 0.2. The automated tool was programmed into ArcGIS 10, using Python to generate a 

runoff grid using precipitation depths for different return periods (Table 2.7). 

 

2.3.3. Simulation scenarios for E. coli concentrations resulting from OWTS  

Spatial distributions of E. coli concentrations were estimated across the Dickinson 

Bayou watershed for different scenarios. The rainfall amount is the driving force in 

estimating potential E. coli concentrations in the Bayou. Age of the OWTS plays a 

significant role in potential E. coli contamination. Type of OWTS will also be a major 

contributing factor, however not considered in this study, due to the lack of required 

information on the difference between E. coli load discharges between the two systems. 

The resulting E. coli loads from different OWTS (ATUs vs. anaerobic systems) that are 

failing are not well documented.  

 

Rainfall amount 

Different rainfall conditions were used in the rainfall-runoff relationship to estimate the 

range of potential E. coli concentrations across the watershed.  Rainfall amounts for 

different return periods used in the simulation are given in Table 2.7.  Observed rainfall 

amounts were also used to validate the runoff model (Table 2.8).  
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Table 2.7 Precipitation in Dickinson Bayou watershed based on different return periods 
and 24 h duration (Haan et al., 1994). 
Return period  Rainfall (mm) 

Two-year 133.4 
Five-year 180.3 
Ten-year 215.9 
Twenty-five year 254.0 
Fifty-year 292.1 
Hundred-year 330.2 

 

Table 2.8 Measured rainfall data in a monitored site in the Dickinson Bayou watershed. 
  Rainfall (mm) 

10-May-13 27.7 
11-Aug-13 27.9 
26-Aug-13 42.7 
20-Sep-13 42.9 
21-Sep-13 17.5 
27-Oct-13 28.2 

22-Nov-13 9.9 
25-Nov-13 18.0 
13-Jan-14 14.2 
2-Feb-14 10.7 
4-Feb-14 6.6 

 

Age of OWTS  

All OWTS that is older than 30 years were assumed to be failing. Out of a total of 4,565 

OWTS, 3,243 OWTS were anaerobic units and 1,322 were ATU. All the ATUs in the 

watershed were less then 30 years, so they were not taken into consideration, thus only 

anaerobic systems were compared. The anaerobic OWTS that were older than 30 years 

were 1132 (Figure 2.11). This resulted in a total of 35% of the anaerobic units in total. 



 
 

35 

 

Figure 2.11 Spatial distribution of old (>30 years) and new (< 30 years) OWTS in the Dickinson Bayou watershed.
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2.3.4 Statistics 

The automated tool was validated by observed runoff data. Observed runoff data was 

obtained from the project funded by the Dickinson Bayou Project for the monitoring of 

E. coli contamination (Morrison (2015) Unpublished MS thesis). A linear regression line 

was plotted to represent the relationship between the model simulated runoff depth (x) 

and the observed runoff depth (y). Regression line can be considered as an acceptable 

estimation of the true relationship between the observed and predicted.  

 

2.3.5 Monitored subwatershed 

The monitored data was obtained from a small watershed with OSSFs within the 

Dickinson Bayou watershed (Figure 2.12 and 2.13). The monitored subwatershed is 

approximately 36 acres, with a total number of 28 houses. None of the houses in the w 

watershed are connected to a municipal sewer system. From these 28 houses, 17 houses 

use the anaerobic septic systems and the remaining 11 use the aerobic type of septic 

systems (Figure 2.13). The soil found in this subwatershed consist of Mocarey loam, 

Mocarey Ceino complex and Mocarey-Algoa complex, all of which are of hydrologic 

soil group D. The slope of this subwatershed is between 0-3 percent. The houses in this 

subwatershed range between 1,011 to 4,047 m2 (0.25 to 1 ac).  
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Figure 2.12 Spatial location of the monitored subwatershed within the Dickinson Bayou watershed.
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Figure 2.13 Monitored subwatershed with the spatial location of Aerobic Treatment 
Units (ATU) and anaerobic units in the watershed. 
 

 

The model’s accuracy was evaluated using the Nash-Sutcliffe Efficiency (E), root mean 

square error (RMSE), and RMSE-observations standard deviation ratio (RSR). In the 

Nash-Sutcliffe model, E is an index of agreement of disagreement between predicted and 

observed values (Nash-Sutcliffe Efficiency, 1970). By the application of linear 

regression analysis, E value evaluates the consistency of the observed values and 

predicted values with which they agree (Nash-Sutcliffe Efficiency, 1970). E will be 

computed using equation 2.4 (Nash-Sutcliffe Efficiency, 1970): 
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𝐸 = 1 − [∑ (𝑂𝑖 − 𝑃𝑖)2𝑛
𝑖=1 ∑ (𝑂𝑖 − 𝑂�)2𝑛

𝑖=1⁄ ]       (2.4) 

where, Oi is the observed values, Pi is the predicted values, 𝑂� is the mean of the 

observed values, and n is the number of samples. E values of negative infinity to 1 

represent a biased model, and values of 0 to +1 represent an unbiased model (McCuen et 

al., 2006). According to Moriasi et al. (2007) and Parajuli et al. (2009) model 

efficiencies are classified as very good (E = 0.75 to 1), good (E = 0.5 to 0.74), fair (E = 

0.25 to 0.49), poor (E = 0 to 0.24) and unsatisfactory (E < 0.0).   

 

RMSE is an important error index that is used in model evaluation as the error that is 

indicated, will represent the units of the interested constituent (Moriasi et al., 2007).  It is 

recommended by Legates and McCabe (1999) for a complete assesment of model 

performance that one must include at least one absolute error measure, RMSE or mean 

absolute error, and at least one relative error measure (R2 or E). According to Singh, et 

al. (2004), RMSE values that are closer to 0 represent a perfect fit, however, values that 

are half of the stand deviation are yet considered low.  

 

The RMSE  equation is: 

 𝑅𝑀𝑆𝐸 = �∑ (𝑂𝑖 − 𝑃𝑖)2𝑛
𝑖=1 𝑛⁄        (2.5) 

RSR is a statistic used for model evaluation, which standardizes RMSE (Equation 2.5) 

along with the standard deviation of the observed data (Moriasi et al., 2007).  This was 

developed by Moriasi et al. (2007) to fill the requirement of an error index and 
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additional data provided for using RSME with the standard deviation that is 

recommended by Legates and McCabe (1999).   

 

The RSR is computed by the use of equation 2.6 (Moriasi et al., 2007): 

𝑅𝑆𝑅 = ��∑ (𝑂𝑖 − 𝑃𝑖)2𝑛
𝑖=1 �/ ��∑ (𝑂𝑖 − 𝑂�)2𝑛

𝑖=1 �     (2.6) 

 

RSR ranges from 0 to a large positive value. The lower values closer to 0 represent 

optimal values and represent a perfect model (Moriasi et al., 2007). Moriasi et al. (2007) 

classifies RSR values for model effiiciences as follows: RSR of 0.00 to 0.50 as very 

good, RSR of 0.51 to 0.60 as good  and RSR > 0.70 as unsatisfactory.  

 

Moriasi et al. (2007) states that these guidelines are applied to continuos and long term 

simulations, and must be adjusted based on the quantity and quality of the measured 

data, model calibration and the model’s magnitude and scope (Moriasi et al., 2007).  

Moriasi et al. (2007) then states when these conditions are not met,  such as a complete 

measured time series, and only a few samples are available per year, data might not be 

sufficient for analysis for statistics that is recommended.  

 

2.4 Results and Discussion 

The automated tool to estimate E. coli concentrations resulting from failing OWTS was 

developed and the code was verified for different scenarios. First runoff was estimated 

for different return periods assuming 24 h duration rainfall. For a 2 year 24-hour rainfall, 
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the highest runoff resulted from developed land (medium and high intensity). This was 

followed by runoff from agricultural lands, and developed low intensity and open space. 

Forested areas generated the lowest runoff.  

 

The model’s accuracy was evaluated using the Nash-Sutcliffe Efficiency (E), root mean 

square error (RMSE), and RMSE-observations standard deviation ratio (RSR). The 

model was calibrated by comparing the model simulated data with observed data. 

Observed data was obtained from the TCEQ monitoring station 11467.  

 

For a two year and fifty year 24-hour rainfall, the highest runoff resulted from developed 

land (medium and high intensity). This was followed by runoff from agricultural lands, 

and developed low intensity and open space. Forests resulted in the lowest runoff of 

approximately (Figure 2.14, Figure 2.15). 

  

.
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Figure 2.14 Runoff volume simulated for a two year return period in Dickinson Bayou watershed.
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Figure 2.15 Runoff volume simulated for a fifty year return period in Dickinson Bayou watershed.



 
 

44 

 
2.4.1 Spatial distribution of E. coli loads in Dickinson Bayou 

The spatial analyses were done to highlight the subwatershed resulting in highest 

potential E. coli load contribution into the streams. The potential E. coli loads resulting 

from failing OWTS were estimated for the Dickinson Bayou watershed. A failure rate of 

25% was applied on the watershed. The potential E. coli loads have been aggregated to 

subwatershed level to identify the areas of concern in the watershed. Bacteria re-growth 

and die-off are not accounted for in these load estimations.  

 

From the model simulations for E. coli loads, subwatershed 10, 38 and 40 are located are 

the main sections of the Dickinson Bayou watershed that have the highest potential E. 

coli loads as a result of failing OWTS (Figure 2.16). Subwatersheds 38 and 40 are 

mainly characterized by developed, open space and low intensity landuse, which consists 

of household size of approximately between one and four people per household. The 

number of OWTS in watersheds 38 and 40 is significantly higher than OWTS in other 

subwatersheds. The combination of the high population density with the high number of 

OWTS in subwatershed 38 and 40 resulted in the highest potential for contributing E. 

coli load in the watershed. Agricultural lands mainly characterize subwatershed 10, 

along with developed, open space and low intensity land use, which consist of household 

size of approximately between two and four people per household. The high E. coli 

loads is a result of the high number of OWTS in the subwatershed which resulted in 

highest potential for contributing E. coli load in the bayou. 
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Figure 2.16 Total daily potential E. coli load resulting from OWTS in the Dickinson Bayou watershed aggregated to  
subwatershed to indicate the areas of potential concern of impairment due to bacteria resulting from failing OWTS. 
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2.4.2. Effects of rainfall on potential E. coli concentration in Dickinson Bayou watershed 

Rainfall amounts (Table 2.6) for different design return periods were applied in the 

rainfall runoff calculation to simulate range of E. coli concentrations in the Dickinson 

Bayou watershed.  Simulated E. coli concentrations in the bayou show that the rainfall 

has direct impact on the spatial distribution (Figure 2.17 - Figure 2.22). As the rainfall 

amount increases, the potential E. coli concentration in the streams decreases. During the 

two-year, 24-hr rainfall simulation, with a precipitation of 133.35 mm, the highest 

potential E. coli concentration getting accumulated and routed in the streams was 

approximately 5,519 CFU/100 mL where as it was only 1,654 CFU/100 mL for a 100-yr, 

24-h storm event.  Even for 100 year storm, the potential E. coli concentrations in the 

creek (1,654 CFU/100 mL) exceed the regulatory standards of 126 CFU/100 mL.  

 

The general trend of the decreasing E. coli concentrations with increasing rainfall 

amount is because of the dilution effects in the stream for the same amount of potential 

E. coli load in the watershed. It should be noted that bacteria re-growth and die-off were 

not accounted for in the concentration estimations.  
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Figure 2.17 Potential E. coli concentrations in the Dickinson Bayou watershed for a two year rainfall return period. 
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Figure 2.18 Potential E. coli concentrations in the Dickinson Bayou watershed for a five year rainfall return period. 
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Figure 2.19 Potential E. coli concentrations in the Dickinson Bayou watershed for a ten year rainfall return period. 
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Figure 2.20 Potential E. coli concentrations in the Dickinson Bayou watershed for a twenty five year rainfall return period. 
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Figure 2.21 Potential E. coli concentrations in the Dickinson Bayou watershed for a fifty year rainfall return period. 
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Figure 2.22 Potential E. coli concentrations in the Dickinson Bayou watershed for a hundred year rainfall return period. 
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2.4.3. Effects of age of the OWTS on potential E. coli concentration in Dickinson Bayou 

watershed 

Results for the 35% failure of the anaerobic systems showed that the highest potential E. 

coli concentration estimated at the outlet of the watershed with 100% failing OWTS is 

5,258 CFU/100 mL (Figure 2.24) with a 2-year return period (133.35 mm). The highest 

potential E. coli concentration estimated at the outlet of the watershed with 35% failing 

OWTS is 1,347 CFU/100 mL (Figure 2.23) with a 2-year return period (133.35 mm). It 

should be noted that even with only 35% of failing OWTS, the resulting potential E. coli 

concentration in the bayou exceeds the regulatory standards of 126 CFU/100 mL. These 

results verify the code: estimating higher E. coli concentrations for 100% failing OWTS 

and lower concentrations with only 35% failing systems. 
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Figure 2.23 Potential E. coli concentrations in the Dickinson Bayou watershed for 35% failure in anaerobic systems. 
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Figure 2.24 Potential E. coli concentrations in the Dickinson Bayou watershed for 100 % failure in anaerobic systems.
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2.2.4 Simulated runoff vs. actual runoff 

The model was validated using observed runoff depth data. Observed runoff data was 

obtained from the project funded by the Dickinson Bayou Project for the monitoring of 

E. coli contamination. The monitored data was collected at an outlet of subwatershed 

located within the Dickinson Bayou watershed (Figure 2.12 and 2.13).  

 

2.2.5 Outlier testing 

This model assumes that the rainfall occurring on the day the sample was collected 

caused the runoff that transports the E. coli to the streams. One monitored runoff value 

(on 11/25/13) was considered to be an outlier because of high runoff even for wet AMC 

conditions.. The Dixon-Thompson test was applied to test the runoff point as an outlier. 

The Dixon Thompson outlier test, which can be used for samples as small as three, is 

only valid for testing one outlier and can be applied for both low outliers as well as high 

outliers (McCuen, 2003). The Dixon Thompson test only tests for the largest and the 

smallest values in a dataset. Since the data point that is considered the outlier was the 

second largest runoff observed, the highest runoff was not included in the outlier test, 

and a sample size of 10 was used instead of 11. The equation for the Dixon-Thompson 

High Outlier Test Statistic is (McCuen, 2003): 

R = 𝑋𝑛 − 𝑋𝑛−2/ 𝑋𝑛 − 𝑋3 …………………………….. (2.7) 

where, 𝑋𝑛 is the largest data in the dataset, and the subscripts representing the rank of 

the value from the smallest to the largest.  
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For the critical values, 𝑅𝑐 for 5%, 2.5% and 1% levels of significance, the null 

hypothesis is rejected if the R is greater than 𝑅𝑐. The test statistic (Equation 2.7) was 

larger then all the 𝑅𝑐 at 5%. 2.5% and 1% levels of significance, and therefore the largest 

runoff was rejected and considered as an outlier by the Dixon Thompson test. The point 

11/25/13 was then removed from the data set. 

 

2.2.6 Runoff depth 

The model was able to predict the runoff at the monitored site at the Dickinson Bayou 

watershed with good agreement with the Nash-Sutcliffe Efficiency test (E = 0.73) (Table 

2.9). Simulated runoff depth (x) versus the observed runoff depth (y) was plotted in a 

scatter plot. The resulting regression line had a r2 value of 0.95 (Figure 2.25). This shows 

an excellent relationship between the predicted data and the observed data.  

 

 

 
Figure 2.25 Model predicted runoff depth compared to observed runoff depth for the 
monitored site in the Dickinson Bayou watershed. 
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For the model simulated runoff, the verification of the model had good agreement (Table 

2.9). The RMSE value is an important error index that is used in model evaluation as the 

error that is indicated, will represent the units of the interested constituent (Moriasi et al., 

2007). The RMSE for the model simulated runoff depth was lower than the observed 

standard deviations and observed averages indicating satisfactory agreement between the 

standard deviation of the model predicted runoff depth and the observed runoff depth 

(Table 2.9). The RSR value indicated good agreement for the model simulated runoff 

and the observed runoff (Table 2.9). 

 

Table 2.9. Model performance for model simulated runoff vs. observed runoff. 
 
Runoff Statistic Observed  
Calculation   

Model 
simulated  

E 0.73  
RSR 0.51  
RMSE 1.79 
Observed Average 3.44 
Observed Standard 
Deviation 3.64 

 

 

2.2.7 Uncertainty 

Uncertainty is an essential issue in water quality modeling, as the results of these models 

are used to make important decisions in water policies, regulation and management 

(Beck, 1987; Sharpley et al., 2002; Harmel et al., 2006; Parajuli et al., 2009; Borel et al., 

2012a). According to Coffey et al. (2010), the accuracy of accounting for all these 
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factors that contribute to E. coli concentrations, both spatial and temporal, is still 

debatable.  

 

Modeling bacteria may result in highest probable errors and lowest confidence as 

compared to nutrient or sediment modeling (Borel et al., 2012b). One potential 

uncertainty in modeling could be from the data inputs in GIS (Borel et al., 2012b). In 

this study, we used the best data available for the inputs of the spatial location of OWTS 

obtained from the watershed officials. In addition, other GIS data that were used such as 

Digital Elevation Model (DEM), soils data (SURRGO), and climate data (NOAA) were 

the best available data. According to Coffey et al. (2010), the uncertainty and variability 

that surrounds bacteria modeling can lead to large discrepancies in the results of 

bacterial modeling. 
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CHAPTER III 

CONCLUSIONS  

 

3.1. Conclusions 

A spatially explicit GIS tool was developed, automated, verified, and applied to simulate 

potential E. coli concentrations in a watershed due to failing Onsite Wastewater 

Treatment Systems (OWTS). This automated tool simulated potential E. coli loads and 

concentrations from failing OWTS across the Dickinson Bayou watershed in Texas. 

Based on the results, it was concluded that rainfall amount plays a significant role in 

routing the E. coli loads to streams in the watershed. The potential E. coli concentration 

in streams decreased with increasing rainfall amount, as a result of dilution. Hence, the 

100-year storm will result in less E. coli concentration as compared to 2-year return 

period storm for a given E. coli in the watershed. However, it should be noted that E. 

coli attenuation factors are not considered in the simulation and the fate and transport 

parameters of E. coli in a watershed will play a significant role in estimating actual 

concentrations in the streams. 

 

The  model was validated using observed runoff data at a specific monitored site within 

the Dickinson Bayou watershed. The model was able to successfully predict the runoff 

occuring at the observed site. The model results were in good agreement (E = 0.73, RSR 

= 0.51)  for the simulated runoff values.  The RMSE values were less than half of the 
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standard deviation showing a good agreement between the observed and predicted runoff 

depth.  

   

This automated tool is very user-friendly and user-driven tool to conduct spatial analyses 

on different watersheds using varying parameters such as land use, rainfall conditions, 

census data, and type of OWTS. In addition, this tool can be used for technical analyses 

as well as for stakeholder awareness. This approach can be powerful to determine areas 

where attention should be focused in the watershed to implement BMPs to decrease E. 

coli pollution. This tool can be used by watershed managers to identify potential threat 

areas and to come up with management options. 
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