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PROJECT SUMMARY 

The Gulf of Mexico coastal zone has suffered significant degradation of water quality and 

freshwater inputs due to coastal population and industrial growth, excess nutrient inputs, emerging 

environmental crises, and changes in regional climate and land use. Excessive nutrient loading is 

among the top environmental concerns since they can cause hypoxia and lead to excessive 

phytoplankton blooms. Harmful algal blooms (HABs) and eutrophication are increasing 

worldwide in frequencies in coastal waterbodies including estuaries and bays. Estuaries are vital 

components to ecosystems, and economics including tourism, fishing, hotels, industries, ports, and 

other developments which are dependent on the health of these estuaries. Freshwater inflows are 

essential to the function and productivity of these estuaries. Excessive nutrient discharges that 

come with these freshwater inflows can degrade the health and causing HABs in their receiving 

estuaries and bays. Eutrophication, hypoxia and/or HABs lead to negative impacts such as 

respiratory illnesses, fish kills and economic disruptions.  

This project focused on the development of reliable and site-specific decision support tools 

that can be used by coastal resources managers for developing state-of-the-art freshwater inflow 

and nutrient criteria and by the scientific community for an enhanced quantitative understanding 

of the controlling factors for hypoxia or HAB occurrence. This report presents the modeling effort 

and data collection conducted for elucidating the controlling factors related to nutrient dynamics 

and algal blooms in Nueces Bay, Texas and the nutrient loading from Nueces River Basin (NRB) 

to the Nueces Bay (NB). Delft3D, an open source software that is widely used around the world, 

was employed to simulate hydrodynamics, nutrient dynamics and algal growth within Nueces Bay. 

The Soil and Water Assessment Tool (SWAT) was used to simulate freshwater inflows and 

nutrients loading from the NRB. Nitrogen, the limiting nutrient for coastal eutrophication, was 

focused. Delft3D Flow-Wave coupled model was used to simulate hydrodynamics and wave 

growth. The results from the coupled model were integrated in Delft3D WAQ to simulate 

phytoplankton growth. The models were calibrated and validated for freshwater inflows, water 

levels, total nitrogen (TN) and chlorophyll-a (algal biomass concentration).  

The model successfully simulated HABs observed in October 2016, where chlorophyll-a 

> 20 µg/L. Simulation results indicated that wave growth in the NB was dominated by wind (> 1-

foot wave-height). High inflow rates (80 m3/s) increased hydrodynamics and mixing, which 

yielded in lower chlorophyll-a (< 20 µg/L) concentration, and vice versa. Nueces Bay exhibited 
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uniform hydrodynamics throughout the bay except at the confluences. Lower algal growth (< 10 

µg/L) was observed at high winds (60 mph). During HABs, TN decreased while chlorophyll-a 

increased. Sensitivity analyses showed water temperature and maximum production rate parameter 

had the most impact (sensitivity > 50) on the algal growths. Hypothetical scenarios indicated that 

high TN (> 3.0 mg/L) and chlorophyll-a (> 100 µg/L) inflows from Nueces River significantly 

increased algal growth and can potentially induce blooms. The SWAT model was successfully 

used to simulate the freshwater inflow and total nitrogen loadings from the NRB. Model results 

show that total nitrogen transported through the Nueces River increases with total freshwater flow 

and vice versa (r2 = 0.72). The models provided an analysis tool for better understanding the 

mechanisms and dynamics of algal growth/blooms, and this kind of tools can be an effective means 

to manage other similar estuaries or coastal waters.  
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PART I. MODELING NUTRIENT DYNAMICS AND ALGAL BLOOMS USING 

DELFT3D – FLOW, WAVE AND WAQ, IN NUECES BAY, TEXAS 

 

1. INTRODUCTION 

 Eutrophication, which can result in harmful algal blooms, is becoming a common 

phenomenon around the globe increasing in frequencies and sizes, both locally and globally 

(Dodds et al., 2009; Smith, 2003). Eutrophication is the excessive growth of aquatic plants, 

including algae in the presence of excess nutrients. Although eutrophication is a common natural 

phenomenon, it can be accelerated by increasing nutrient discharges from anthropogenic activities 

(Khan and Ansari, 2005). Harmful algal ‘blooms’ or HABs can lead to a variety of problems posed 

to the environment and humans, such as toxins released in both water and air, difficulty in 

breathing, respiratory diseases, fish die offs, reduced tourism and bird kills. HABs can also 

increase turbidity of water bodies reducing the light penetration for other aquatic organisms. They 

are responsible in disrupting economic growth and degrade the water qualities of bays, lakes and 

coasts (Dodds et al., 2009; Ferreira et al., 2011; Khan and Ansari, 2005; NOAA, 2016; Roelke et 

al., 1997; Smayda, 1997; Zhang et al., 2020).  

Understanding eutrophication and harmful algal blooms dynamics and the effects of climate 

change and anthropogenic activities on these ecological processes is becoming more and more 

vital for better management practices. Research conducted by Cloern et. al. (2001) in the coastal 

estuaries have led to the understanding that harmful algal blooms, hypoxia, degraded water quality 

and fish die-offs are related to nutrient loads to estuaries. Zhang et. al. (2020) studied the effects 

of microplastics loads and resuspension, linking to accelerated eutrophication and algal blooms. 

Studies conducted by Turner et. al. (2015) linked nutrients and chlorophyll-a measurements (an 

indicator for algal biomass) with seasonal trends for hypoxia and HABs. Multiple studies, using 

laboratory analysis, empirical solutions, statistical analysis and numerical methods, were prevalent 

in past years to correlate eutrophication to nutrient loads (Begin et al., 1988; Ferreira et al., 2011; 

Longley et al., 2019; Zhang et al., 2020). 

Numerical modeling of the aquatic systems can help identify the root causes, processes, factors 

and can help predict the formation of, or evaluate the management options to mitigate harmful 

algal blooms (Jian et al., 2014). Numerical models have been developed and employed to analyze 
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and simulate environmental conditions for water bodies across the globe. Researchers have used 

numerical models to define hydrologic relationships, establish baselines for nutrients and define 

freshwater inflow requirements to maintain healthy ecosystems (Brock, 2001; Turner, 2014; 

Turner et al., 2015). Numerical modeling can integrate multiple processes in a single model and 

in different phases. It can be used to simulate ‘worst-case’ scenarios and to predict and forecast 

environmental disasters. Model sensitivity analysis can identify key parameters to which the model 

is most responsive to and can be translated to environmental situations for remediation or 

preventive measures. It can also be used as a guideline to legislate management practices and 

regulations (Brock, 2001; Felip and Catalan, 2000; Jian et al., 2014; Schoenbaechler and Guthrie, 

2011; Turner et al., 2015; Xu et al., 2017).  

A three-dimensional modeling study (Chen et al., 2019) conducted using Delft3D examined 

the impact of carbon dioxide (a greenhouse gas) and eutrophication in a drinking water reservoir. 

Anthropogenic activities have increased carbon dioxide concentration in the atmosphere which 

has simultaneously increased the chances of eutrophication in a nutrient rich environment (Chen 

et al., 2019). Vaz et al. (2019) developed a model using the Delft3D suite and studied different 

factors including water temperature, salinity, pH and chlorophyll–a concentration to relate to 

eutrophication of the coastal mesotidal lagoon, Ria de Aveiro. A numerical model using fuzzy cell 

automata techniques and limited observed data was developed and applied on Dutch coastal waters 

in predicting possible algal blooms (Chen and Mynett, 2006). A data-driven statistical model was 

developed by Shen et al. (2019) using long-term observed data and Least-Squares Support Vector 

Machine (LS-SVM) to simulate and predict algal blooms in relation to nutrient loads and 

environmental conditions, such as, solar radiation, temperature, dissolved oxygen and suspended 

solids.  

In these previous studies, models were developed using process algorithms and statistical 

approaches (Chen and Mynett, 2006), data-driven statistical models (Shen et al., 2019), and 

Delft3D–Flow, Wave and WAQ (Alosairi and Alsulaiman, 2019; Chen et al., 2019; Mao et al., 

2015; Vaz et al., 2019; Xu et al., 2017) to simulate hydrodynamics and water qualities including 

water levels, salinity, temperature, emerging contaminants, dissolved oxygen, etc. The 

performance of the models was evaluated and determined using criteria and objective functions 

set for each individual study. Delft3D models (Alosairi and Alsulaiman, 2019; Chen et al., 2019; 

Mao et al., 2015; Vaz et al., 2019; Xu et al., 2017) performed “well” for salinity and temperature 
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simulations for Qingcaosha Reservoirs (Xu et al., 2017), hypoxia simulation in Kuwait Bay 

(Alosairi and Alsulaiman, 2019), nitrate and phosphate (Chen and Mynett, 2006) and spatial and 

temporal distribution of nutrients and phytoplankton (Mao et al., 2015). The data-driven model 

developed by Shen et al. (2019) performed ‘well’ in simulating temperature dependency of algal 

blooms but the model failed to accurately compute the effects of nutrient reduction and nutrient 

limitation on algal growth. This is because the model used observed data for training and did not 

incorporate the growth processes or mechanisms of algal blooms. The algal concentration 

decreased with decreased nutrient concentrations and vice versa. Thus, this model is likely to 

simulate lower algal concentrations during algal blooms, when the nutrient concentrations are 

reduced due to nutrient uptake, instead of higher algal concentrations. The model showed 

satisfactory results in predicting algal concentration but is limited in its application because the 

model requires training data for its predictive capabilities (Shen et al., 2019). In general, Delft3D 

model studies (Alosairi and Alsulaiman, 2019; Chen et al., 2019; Mao et al., 2015; Vaz et al., 

2019) showed the effect of hydrodynamics on algal growth, but none of the studies included the 

impacts of hydro-nutrient dynamics relating to mechanisms and biological factors underlying algal 

growth.  

Delft3D models (Alosairi and Alsulaiman, 2019; Mao et al., 2015; Vaz et al., 2019) have  been 

employed in predicting seasonal variations, hypoxia, water quality and hydrodynamics. Various 

processes are integrated with the modeling tool and thus the model provides a great flexibility to 

analyze the effect of each process in individual study and model applications (Alosairi and 

Alsulaiman, 2019; Mao et al., 2015; Vaz et al., 2019). However, Delft3D models failed to perform 

‘well’ in the absence of consistent data and presented large discrepancies when data measurements 

with large uncertainties were used (Vaz et al., 2019). Delft3D is process sensitive, that is, all 

governing parameters must be evaluated for accurate results. For example, in the study of hypoxia 

in Kuwait Bay (Alosairi and Alsulaiman, 2019), algal mortality and respiration, which stress 

dissolved oxygen, were not considered (Alosairi and Alsulaiman, 2019; Mao et al., 2015, 2015; 

Xu et al., 2017). Furthermore, a calibrated model designed for a specific estuary would be difficult 

to implement and calibrate for another estuary due to different geographical location, bathymetry, 

population, temperature and nutrient inputs (Turner, 2014; Turner and Chislock, 2010).  

Studies using Delft3D models conducted by Xu et. al (2017) showed that wind drag 

coefficient, astronomic forcing components and bottom roughness have been the key parameters 
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in simulating the wind stress on the free water surface that is responsible for intermixing, 

hydrodynamics and nutrient distributions (Xu et al., 2017). During a hypoxia and fish kill study of 

Kuwait Bay, the reaeration transfer coefficient, which is dependent on wind speed, water velocity 

and temperature, was found to be the key parameter in hypoxia modeling (Alosairi and 

Alsulaiman, 2019). Nutrient levels, limitation functions, nutrient kinetics, reaction rates, light 

attenuation coefficient and water temperature have been identified as the key parameters when 

considering algal growth, especially in deep waters where light penetration becomes limited and 

vertical temperature gradient is observed (Glé et al., 2008; Jian et al., 2014). The analyses of the 

parameters, that is, wind drag coefficient, bottom roughness, temperature, etc., have established 

that water qualities and HABs are affected by the inflows to, and hydrodynamics of, a waterbody 

(Alosairi and Alsulaiman, 2019; Xu et al., 2017). 

The water quality, temperature and nutrient dynamics, in turn, impacts the algal dynamics of 

estuaries. Studies conducted by Vaz et al. (2019) pointed out that during winter the freshwater 

inflow from rivers with lower temperature and nutrient concentration and reduced solar radiations 

on estuaries could potentially reduce the phytoplankton growth and biomass of estuaries. The study 

also concluded that high inflow rates of around 50 m3/s, having a constant nutrient concentration, 

can yield lower algal growth, even under favorable conditions due to a high magnitude of 

hydrodynamic activities. Studies conducted by Paudel et al. (2019) showed that inflow affects the 

dynamics of total suspended solid concentrations (TSS), nutrients and salinity regimes. The study 

also found that limited inflow resulted in the curtailing of inorganic nitrogen and TSS transport 

(Paudel et al., 2019). During algal blooms, nutrient concentrations decreased due to nutrient 

uptakes by algae (Vaz et al., 2019). At the same time, it has also been observed that nutrient 

concentrations were lower in the absence of algal blooms (Turner et al., 2015). The study 

accounted this phenomenon to be the result of fast denitrification. The denitrification rates can 

vary inconsistently both temporally and spatially (Turner et al., 2015). The nutrients tend to 

accumulate in the shallow areas of lagoons with lower hydrodynamic processes and thus can yield 

in higher algal biomass especially during spring and summer. The dissolved oxygen decreases 

during these periods which can lead to hypoxia with persisting algal formations, even with 

freshwater inflows to water bodies (Vaz et al., 2019).  

Nueces Bay, the second largest bay of the Nueces Estuary, which is connected to the Nueces 

River, receives intermittent flow carrying nutrients, from Nueces River. This intermittent flow can 
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act as a pulsed nutrient input (Glé et al., 2008; Longley, 1994) to Nueces Bay. Pulsed nutrient input 

has shown to promote phytoplankton diversity and growth, which is vital to the health of the 

estuarine system over a short period of time (Yamamoto and Hatta, 2004). Nueces estuary is 

surrounded by large urban development and is expanding both in size and economy (Ritter and 

Montagna, 1999). Over the past decades, Nueces estuary has observed seasonal hypoxia, fish kills, 

respiratory illnesses and algal blooms (NOAA, 2016; TPWD, 2019a; Turner et al., 2015). 

Understanding the interplay among the freshwater inflow, nutrient dynamics and algal blooms can 

help prevent economic losses and environmental disasters, promote urban and economic growth, 

tourism, fishing, healthy aquatic system and healthy estuary.  

Various studies have been conducted to characterize hydro-morpho-dynamics and water 

quality in assessing environmental pollution, groundwater-river exchange, suspended solids and 

nutrient concentrations (Murgulet et al., 2016; Paudel et al., 2019) for Nueces River and Nueces 

Bay; however, few studies exist on Nueces Bay (Turner et al., 2015) in relation to harmful algal 

blooms. Studies conducted by Paudel et al. (2019) established relation between nutrients with 

suspended solids (Paudel et al., 2019). In another study, Murgulet et al. (2016) quantified the 

impact of variable groundwater-surface water interactions due to anthropogenic activities, for 

example, multiple dams on water quality in the Nueces River and Nueces Estuary. Studies on the 

relationships between algal blooms, hydrodynamics, and nutrient dynamics of Nueces Bay to help 

understand the underlying factors affecting HABs have been very limited. 

This study focused on evaluating the relationships between freshwater inflows, nutrients 

loading, and algal blooms in Nueces Bay. A Delft3D–Flow and Wave (hyrdro-morpho-dynamics) 

coupled model was used to simulate the hydrodynamics of the bay. The coupled model 

incorporated the effects of wind, wind-induced waves, currents, swell conditions and tides on the 

intermixing in the bay. Current and historic data were used to calibrate and validate the coupled 

Delft3D -Flow-Wave model. The hydrodynamic results were used as inputs to the Delft3D WAQ 

model to simulate nutrient distribution and algal formations, along with other parameters and 

processes such as water temperature, nutrient loading, salinity, nutrient limitation factors. The 

outputs of Delft3D WAQ were compared with the current and historical events for algal blooms. 

The integrated calibrated model can be used to predict and forecast the effects of climate changes 

or anthropogenic activities on nutrient dynamics and algal blooms. It can also be used to simulate 

and ‘foresee’ environmental disasters and provide baselines for establishing guidelines or 



11 

 

preventive or remedial measures and for proper management practices to coastal managers, 

municipalities, communities, and states. This study could also facilitate management practices for 

freshwater inflow and nutrients to maintain a healthy ecosystem.  

 

2. STUDY AREA 

Nueces River Basin is a large semi-arid watershed located in South Texas, which serves as the 

main source of freshwater inflows to Nueces Estuary and the Nueces Delta (Hill et al., 2011). 

Waters from the Nueces River are used in industries and urban developments as well as in 

agriculture by City of Corpus Christi and its adjacent regions (Anderson, 1960). The Nueces 

Estuary consists of a primary bay, the Corpus Christi Bay which opens to the Gulf of Mexico with 

a confining barrier island running at an offset and in parallel to the coastline (Figure I-1).  Nueces 

Bay is a large shallow secondary bay having an average depth of about 2.40 m (Buskey, 1993). 

 

Figure I-1. Geographical location of Nueces Bay, Corpus Christi Bay along the Gulf of Mexico. 

 

Nueces Bay, like other estuaries, requires freshwater inflows of varying degree to support its 

flora and fauna (Ritter, 2005). Over the years, there has been a reduced freshwater inflow into the 
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bay (Cunningham, 1999; Hill et al., 2011). Reduced freshwater inflow from the semi-arid Nueces 

River Basin (NRB) coupled with urban and industrial discharges carrying excess nutrients leads 

to an imbalanced ecosystem which can jeopardize the health of the aquatic system and 

environmental health of the Nueces Bay (Hill et al., 2011; Ritter and Montagna, 1999). With 

increased nutrient loadings and reduced flow, the Nueces Bay has experienced eutrophication and 

harmful algal blooms (red tides) over the past decades (TPWD, 2019a). Harmful algal blooms 

(HABs) are often referred to as ‘red tide’ but the HABs do not necessarily result only in red color. 

It can come in blue, blue-green, green or brown colors as well, depending on the type of dominant 

species (NOAA, 2016). The term ‘harmful’ refers to release of toxins by certain species of algae 

which is responsible for fish die-off, bird kills, respiratory illnesses and economic losses (Dodds 

et al., 2009; NOAA, 2016). The losses are not just limited to communities, they are also a national 

concern as it affects the economic health, health of people, fishing, tourism and jobs especially in 

the coastal communities (Brock, 2001; Buskey, 1998; Cunningham, 1999; Dodds et al., 2009; Hill 

et al., 2011).  

Apart from the nutrient loadings from the Nueces River, the Nueces Bay also receives and/or 

exchanges materials due to tidal exchanges with Corpus Christi and adjacent bays, along the Gulf 

of Mexico (Brock, 2001). The adjacent bays of the Nueces Estuary contribute about 25-33 % of 

the net tidal entrainments and inflows. 8% of the total nitrogen is deposited through atmospheric 

deposition in the Nueces Estuary (Brock, 2001). The Nueces estuary has a restricted tidal mixing 

with the Corpus Christi Bay and the Gulf of Mexico due to a bottle neck resulting in microtidal 

amplitudes (Figure I-2). Despite these conditions, the main loss of nutrients is through tidal 

exchange of entrainments and denitrification, where the later accounts for almost 40% of nitrogen 

losses (Brock, 2001).  
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Figure I-2. Map of Nueces Bay and Corpus Christi Bay with a bottleneck opening connecting the 

two bays. 

 

Nueces River Basin (NRB) covers approximately 16,600 square miles at an elevation of 730 

m with the Nueces River travelling around 320 miles in the southeast direction before discharging 

into Nueces Bay (TPWD, 1974). Reservoirs and dams on the NRB were built to meet water 

demands with increasing population and developments, further decreasing the inflow to Nueces 

Bay and changing water quality into the bay (Cunningham, 1999). Since the 1980s, these 

impoundments in the watershed have reduced the flow to the coastal bay by more than 50%, 

changing the water quality and nutrient loads into the bay, coast and the Nueces Delta (Hill et al., 

2011). Choke Canyon Reservoir and Lake Corpus Christi serve as the main water sources for over 

600 thousand people stretching over seven counties (Cunningham, 1999). With increase in 

population and water demands, more water needs to be stored upstream of the river in the 

reservoirs. The major recharge to this semi-arid basin is thus through precipitation and rainfall. 
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Water demand is likely to increase with the development and regional growth coupled with climate 

changes and the amount of freshwater flowing through the Nueces River and into the Nueces Bay 

is challenged by these events (Anderson, 1960; Cunningham, 1999; Hill et al., 2011; Powell et al., 

2002; TCEQ, 2014). 

 

3. BACKGROUND 

Freshwater inflows have positive impacts in terms of water circulation in estuaries, supplies 

of nutrients for the ecosystem, and sediment transport which contribute to the valuable production 

of coastal fisheries. It can also have negative impacts including toxic compound transport and 

diseases through bacteria (Powell et al., 2002). Prolonged hypersaline conditions of Nueces Bay 

from reduced freshwater inflow impact the vegetation cover, marine species diversity and richness 

and biological productivity (Hill et al., 2011). Hill et al. (2011) also showed that prevailing 

conditions have affected the productivity of shrimp and recreational faunal species. Mitigation 

efforts were undertaken for the Nueces Delta, through freshwater inflows from the Choke Canyon 

reservoir, but were soon challenged, due to the dilemma between meeting population water 

demands and restoring environmental health during droughts (Hill et al., 2011). 

At the same time, the economic development, growth, and climate change contribute to the 

sources of the nutrients responsible for eutrophication (Kiedrzyńska et al., 2014; Novotny, 1994). 

The sources of the nutrients consist of two parts: point and non-point sources. Section 502 of the 

Clean Water Act has defined and classified the point and non-point sources of nutrient loads. Point 

sources for nutrient loads, includes runoff from various farms, mining operations, oil and gas 

fields, constructions, and domestic sewers. While non-point source, for example, includes 

agricultural land runoffs, leachates, unchanneled runoffs from urban areas, runoffs from 

abandoned and active mines and construction sites, atmospheric deposition and leachates from 

septic tanks and others (EPA, 2015; Kiedrzyńska et al., 2014).  

One of the major sources of point and non-point nutrients is the runoff from the use and 

overuse of chemical fertilizers in agricultural and farm applications. According to studies 

conducted by Cao et al. (2018), to promote and achieve a better yield of crops, a large amount of 

anthropogenic fertilizers (N-fertilizers) have been used in the US since the latter half of 1900s. 

Poor use efficiency and management, rather than the use of the fertilizers, have been cited for the 

resulting environmental and ecological problems from this use of fertilizers. From 1940 to 2015, 
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the use of nitrogen (N) fertilizers increased from 0.2 g N m-2 yr-1 to 9.0 g N m-2 yr-1 (Cao et al., 

2018). Increased application has increased the agricultural production and N fertilizer use 

efficiency about 25% and 30%, respectively. Since only about 50% of the N fertilizers are utilized 

by the crops, most of the unused N fertilizers are carried by the runoff into waterbodies including 

streams, rivers, and bays (Smil, 1999). Smil (1999) also revealed that N fertilizers applied are lost 

to the environment through denitrification, nitrification, volatilization, and leaching causing 

numerous environmental and ecological problems. As such, acidification of soil, biodiversity 

reduction, emission of greenhouse gases and eutrophication were the end results and are some of 

the examples of the problems encountered (Bowman et al., 2008; Brock, 2001; Smil, 1999).  

In research conducted by Alexandratos and Bruinsma (2012), it was predicted that by 2050, to 

meet the demand of the growing population, the agricultural production would need to be doubled. 

This implies that the application of N fertilizer would increase leading to higher N loss and higher 

stress to the environment and ecology including excessive phytoplankton growth and 

eutrophication. Phytoplankton including algae are micro- and macroscopic plants without roots 

and branches, residing and growing in water across continents around the globe. They are the 

primary producers in the aquatic systems (Deltares, 2018c; Glé et al., 2008). They can live and 

grow, both in freshwater and in saltwater and contain about thirty-thousand known species. They 

can grow at different degrees of salinity, organic matter, temperatures and pH (O’Neil, 2011). With 

the versatility and adaptivity to different conditions for growth, phytoplankton require the 

macronutrients namely, nitrogen and phosphorous, to grow. When these macronutrients are 

available in excess, phytoplankton including algae can have excessive growth resulting in 

eutrophication leading to a variety of problems posed to the environment and society (NOAA, 

2016; Roelke et al., 1997; Smayda, 1997). 

Algal blooms are the significant increase of algae in the ecosystem, growing out of control, 

due to the excessive supply of nutrients. Although phytoplankton are the primary producers of an 

aquatic ecosystem, eutrophication being a natural phenomenon can be accelerated by 

anthropogenic nutrients and can be harmful to the environment and to humans. Harmful algal 

blooms produce toxins which are harmful to humans, shellfish, marine mammals and birds 

resulting in fish kills, respiratory diseases, hypoxia (deficiency of dissolved oxygen for marine 

plants and animals, especially, when DO < 3 mg O2 /L at the bottom (Kristin, 2011)) and sometimes 

even death in fishes, plants, birds, animals and humans. Other types of non-harmful algae are 
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present in aquatic system but they assert a certain amount of demand for dissolved oxygen in water 

which can also lead to fatal results for marine aquatic system (NOAA, 2016; Roelke et al., 1997; 

Smayda, 1997). Equation 1 represents typical algal photosynthesis (Powley et al., 2017a): 

16 NO3
-
 + HPO4

2-
 + 16 CO2 + 122 H2O + 18 H++ (

photon, or

light
) → C106H263O110N16P + 138 O2   (1) 

Equation 1 shows that nitrogen (nitrate as N) and phosphorous (hypophosphate as P) are the 

macronutrients required for the algal growth. Although both nitrogen and phosphorous are 

essential nutrients, they are usually not limiting at the same time. Study of Turner (2014) showed 

that in freshwater systems, phosphorous is normally the limiting nutrient and in saline or coastal 

areas, nitrogen is normally the limiting nutrient for algal growth (Turner, 2014). In  the event of 

deficient inorganic carbon in the water bodies during eutrophication, the required CO2 is drawn 

from the atmosphere which is also responsible for the increase in pH during day time (Schindler, 

1974; Turner and Chislock, 2010). With excessive growth, the turbidity of the water increases, 

reducing the transparency and light availability for other aquatic plants. Other marine plants, 

vegetation and fishes die due to deficiency of light, inorganic carbon, and hypoxia (Chai et al., 

2020; EPA, 2000; Fondriest, 2014).  

Decomposition of dead marine plants, vegetation and fishes further increases the oxygen 

demand in the water. The toxins that are produced by HABs and hypoxia result in adverse effects 

to aquatic systems, plants and birds (Ferreira et al., 2011). The overall effect is the increased cost 

of water treatment for potable water, economic losses and human and environmental health 

hazards (Kristin, 2011). Studies conducted by Dodds et al. (2009) found that in the past decade, 

the US had encountered a loss of about 2 billion US dollars to eutrophication. In a report published 

by NOAA (NOAA, 2016), Texas alone has suffered a loss of about $10 million in oyster landings 

from a red tide in 2011, while around 500,000 people in Ohio did not have access to clean drinking 

water as HABs were present near the treatment plant in Lake Erie in 2014. In Washington state, 

closure for razor clam recreational harvesting due to algal blooms has resulted in an estimated loss 

of $40 million in 2015 (Dodds et al., 2009; NOAA, 2016). 

 

4. LITERATURE REVIEW 

Algal blooms are spreading globally from ongoing climate changes and anthropogenic 

activities causing excessive nutrient loads to lakes, estuaries, and coasts (Griffith and Gobler, 

2019; Raven et al., 2020). To predict and forecast these algal blooms, numerical models can act as 
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a vital tool for management practices, locally and globally (Janssen et al., 2019). Literature review 

of previous research on hydrodynamics, water quality, and modeling have been conducted and 

briefed below. 

 

4.1 Nutrients dynamics and algal blooms in coastal bays and knowledge gaps 

Algal blooms and their relations to different environmental factors have been studied around 

the globe by numerous researchers. Studies by Bricker et al. (1999) showed that majority of the 

studied estuaries exhibited high eutrophic conditions stemming from anthropogenic nutrient 

inputs. The elevated nutrient concentrations can spur algal blooms. During phytoplankton blooms, 

Assmy et al. (2019) found that diatoms are generally the dominating species in phytoplankton 

community. Kumar et al. (2018) reported that high silicon flux and total nitrogen, and low sea-

surface temperatures of water bodies played a prominent role in inducing harmful algal blooms in 

southeastern coastal waters of the Arabian Sea. Apart from nutrients and hydrodynamics, carbon 

content can also contribute to the flora-fauna of algal dynamics (Raven et al., 2020). Global 

warming and increase in carbon dioxide levels in the atmosphere has shifted the equilibrium in the 

carbon cycle and participated in the increase of dissolved carbon contents in water bodies and 

estuaries (Raven et al., 2020). Atmospheric transport and deposition of nutrients, through dusts, 

prior to algal blooms had been observed in the coastal water of east China (Tian et al., 2020). Algal 

blooms are also responsible for the reduction of resources-use efficiency for other plankton 

communities (Chai et al., 2020). Although nutrient dynamics, anthropogenic activities and climate 

change play important role in inducing algal blooms, biotic factors for each species of 

phytoplankton and/or specific abiotic factors of individual estuary also take part in algal dynamics 

(Bricker et al., 1999; Chai et al., 2020; Kumar et al., 2018; Raven et al., 2020; Tian et al., 2020).  

Studies conducted by Kumar et al. (2018) showed the seasonal variation of the nutrient fluxes 

and their correlation with the phytoplankton growth and HABs in Arabian Sea. Data for dissolved 

oxygen, chlorophyll-a, salinity, ammonia, nitrite, nitrate, phosphate, and silicate were collected 

and analyzed. Statistical analyses were performed to establish relationship between phytoplankton 

growth and water qualities using multivariate regression analysis. The study found that diatoms 

dominated the phytoplankton community, and the HABs were induced primarily due to total 

nitrogen. No fish kill events were observed, which might be due to the hydrodynamic mixing 

and/or tidal effects and runoffs. The study concluded that high total nitrogen was the predominant 
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HABs driver. The study also concluded that during high monsoon, there would be greater runoffs 

and greater amount of nutrients would be carried with it, which in turn would induce a greater 

amount of HABs (Kumar et al., 2018). The studies conducted by Kumar et al. (2018) and Wang 

et al. (2020) used statistical tools to examine the correlation between studied factors and HABs 

but did not evaluate HABs in terms of process mechanisms and underlying factors controlling 

those mechanisms.  

A study conducted by Vybernaite-Lubiene et al. (2017) used statistical and laboratory data to 

establish annual budget for nutrient and understand the effect of hydrologic loading rates on algal 

blooms and nutrient transformations of a hyper-eutrophic Curonian Lagoon. The study also 

focused on the mass balance and nutrient retention during algal blooms in determining whether 

estuaries serve as a nutrient sink or source during algal blooms. The study showed that changes in 

nutrient loadings influenced phytoplankton composition and algal blooms which in turn changed 

the transformation of nutrients in the estuary. The study focused on mass balances of nutrients 

using nutrient cycles and the corresponding chemical transformations, but the relationship between 

the species of nutrient during retentions, nutrient transformations and biological processes and 

their influence on algal growth were not evaluated. Also, the study did not address the nutrient 

dynamics relating to algal growth and the limiting factors and nutrients responsible for algal 

blooms (Vybernaite-Lubiene et al., 2017).  

 

4.2 Modeling efforts conducted, findings and knowledge gaps 

Vaz et al. (2019) used Delft3D Flexible Mesh Suite (D-Flow and D-WAQ) to assess 

spatiotemporal evolution of chlorophyll a, nutrients, water temperature, salinity, and pH in the 

coastal waters of Portugal. D-Flow was used to simulate three-dimensional hydrodynamics of the 

waterbody and D-WAQ was used to simulate for water quality and ecological conditions in the 

same computational grid. The study also evaluated light availability and nutrient limitation factors 

in relation to phytoplankton growth. The study found seasonal variations of algal biomass during 

blooms occurring in spring and summer, while algal concentrations decreased from late summer 

to winter. The study concluded that algal blooms were principally governed by temperature and 

nutrient availability, which in turn were strongly influenced by tidal mixing and hydrodynamics. 

It was observed that, during blooms, the nutrient concentrations were high during low algal 

concentrations and vice versa. The study found the geomorphological characteristic of the water 
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body also played an important role in water quality and ecology simulations. The study focused 

on abiotic factors, that is, water temperature, salinity, pH, and light availability to simulate algal 

blooms but the biotic factors, for example, nutrient limitation, light limitation, and kinetics, were 

not evaluated for algal growth mechanisms (Vaz et al., 2019).  

A data-driven model was developed for James River estuary using Least Square Support 

Vector Machine (LS-SVM) and Empirical Orthogonal Function (EOF) model (Shen et al., 2019), 

to predict algal blooms and nutrient dynamics using consistent and continuous observed data. The 

study showed that zones with high hydrodynamic processes, which induced high mixing, had a 

lower algal concentration. The hydrodynamics and distribution of nutrients were similar for 

observation stations with similar geomorphological characteristics. Larger segments of the water 

bodies with higher retention time were more susceptible to algal growth than segments with lower 

retention times. The model was able to predict algal blooms with ‘training data’ which did not 

include other abiotic and biotic factors controlling algal blooms, for example, competition of light 

availability and nutrients, which potentially resulted in discrepancies in the model for algal blooms 

prediction. Lower data frequency and resolution were also considered to be the potential cause for 

the discrepancies. The model did not recognize other controlling factors, such as biotic and abiotic 

factors, but is capable of simulating interannual blooms responding to nutrient loading changes. 

For predictive skills, the model required training data, which might limit hydrodynamics and water 

quality studies for many areas where data availability is limited (Shen et al., 2019).  

Jian et al. (2014) used Euler-Lagrange Circulation (ELCIRC) model with unstructured mesh 

to simulate interactions of hydrodynamic conditions, nutrients, temperature, dissolved oxygen, 

light intensity, and phytoplankton on Xiangxi river (XXR). The study conducted nutrient analyses 

based on statistical results and the model showed discrepancies in accurately determining the 

nutrient dynamics, water quality (focusing on pH, phytoplankton, temperature. and dissolved 

oxygen) and nutrient mass transport in XXR. The model results showed a lower simulation 

efficiency when compared against a structured grid mesh model. To accurately evaluate the effect 

of hydrodynamics and algal blooms, further refinements of the model were cited but was not 

included in the study. The model did not include the biotic factors and driving mechanism of algal 

growth, which potentially led to the discrepancies in simulated water quality data when compared 

with observed data (Jian et al., 2014). 
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Chen and Mynett (2006) used fuzzy cellular automata approach to predict algal blooms on 

coastal waters based on the hydrodynamics and nutrient dynamics. The study used limited 

observed data combined with empirical knowledge on algal blooms to predict algal blooms. 

Detailed biological processes and mechanisms were circumvented; thus, many parameters 

involving algal growth mechanism and processes were not evaluated. The study showed that 

nitrate and phosphate concentrations were much higher in winter, during low algal concentrations, 

than in late spring and early summer when the algal concentrations were high. The study also 

showed that nutrient concentrations in estuaries were higher than in coastal waters and thus 

estuaries had a higher algal blooms potential than coastal waters. The complex algal growth 

mechanisms were not considered in the model (Chen and Mynett, 2006).  

 

4.3 Current available models and their advantages/disadvantages  

The data-driven model developed by Shen et al. (2019) used the least-square support vector 

machine (LS-SVM) and empirical orthogonal function (EOF). The EOF used in this data-driven 

model reduced the data dimensions thus simplified the model. The EOF performs this by 

transforming variables of the model into empirical functions and fitting them on all observed 

stations. The EOF model was also used to separate the temporal and spatial variations for the 

principle component, that is, chlorophyll -a. The LS-SVM is a powerful learning machine used in 

time-varying simulations. The LS-SVM and temporal vectors of EOF were coupled to generate 

one single model for all observation stations and ‘fitting’ it with the observed data. The single 

model used flow, total suspended solids, total nitrogen, total phosphorous and chlorophyll–a as 

independent variables for simulations (Shen et al., 2019). Since the model does not compute 

processes, rather uses data for its simulations and predictions, the model thus requires training data 

which might limit the model application in many areas due to the lack of consistent data.  

The statistical analysis performed by Vybernaite-Lubiene et al. (2017) was to establish annual 

budget for nutrient and to understand the effect of hydrologic loading rates on algal blooms and 

nutrient transformations. The study used mass balances to quantify the water body as source/sink 

for phytoplankton during algal blooms. The model attributed algal growth to the nutrient 

concentration in the waterbody without considering any nutrient transformation or algal growth 

mechanisms. This aided in the advantage that in-depth processes were not considered, and algal 

blooms were only correlated to the nutrient concentrations. At the same time, it posed the 
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disadvantage of not understanding what processes affected the algal growth and whether the 

nutrient concentration as the only parameter that was factored in the algal growth was enough. 

This also made it difficult to ascertain which nutrient components or which key factors played the 

vital role(s) during algal blooms (Vybernaite-Lubiene et al., 2017).  

The Euler-Lagrange Circulation (ELCIRC) model mentioned above allows user to incorporate 

complex boundary conditions (Jian et. al. 2014). The model is principally used in three 

dimensional baroclinic (fluid density depending on temperature and pressure) circulation in oceans 

and river using algorithms to address physical processes and forcing in oceans and rivers. The 

ELCIRC model effectively simulates the baroclinic circulations from river to ocean scales and 

does not require high resolution grid for its simulations. The model integrated separate algorithms 

for hydrodynamics, tidal forces, and water quality constituents, that is, suspended solids, dissolved 

oxygen, and chlorophyll a. To accurately evaluate the effect of hydrodynamics and algal blooms, 

need for further refinements of the model was cited by Jian et. al. (2014). Refinements to study the 

effects of hydrodynamics and HAB would potentially require inclusion of separate algorithms for 

complex mechanisms of water quality in the model (Jian et al., 2014). 

The fuzzy cellular automata model developed by Chen and Mynett (2006) circumvented 

complex mechanism calculations for algal blooms and performed simulations using limited 

observed data and empirical formula. The model thus did not require the calibration and 

optimization of biotic factors affecting algal blooms. This presents an advantage and a 

disadvantage. The model does not require large number of parameters to be evaluated/calibrated, 

at the same time, the model would not evaluate which process parameter(s) is/are responsible in 

HABs (Chen and Mynett, 2006). 

SPAtially Referenced Regressions of Water Quality ( SPARROW ) (Rebich et al., 2011) model 

uses process-based hybrid statistical approach to estimate nutrient loads. The nutrient load 

estimation relates to different upstream sources and landscape characteristics that influence stream 

loss and nutrient transport. It estimates the nutrient load by considering landscape characteristics, 

that is, surface and groundwater flow, surface and groundwater velocity, and slope of landscape 

as independent variable for the river. The model used least squares regression analysis for 

calibration and validation. The model’s capacity is limited in estimating nutrient loads for estuaries 

and bays and is restricted to reaches only. 
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The models mentioned above (Chen and Mynett, 2006; Jian et al., 2014; Rebich et al., 

2011; Shen et al., 2019) have been implemented to budget for freshwater inflows to maintain a 

healthy estuary, provide baselines to avoid nutrient pollution and environmental disasters, and 

establish relationships between nutrient loads and algal blooms. But there is, still, an absence in 

studying the relationships of the nutrient dynamics with biotic and abiotic factors causing the algal 

blooms, which was the primary focus of this research. 

D-Flow and D-Water Quality modules are parts of the Delft3D modeling tool that have 

been used to simulate hydrodynamics and water quality, respectively (Alosairi and Alsulaiman, 

2019; Bastidas et al., 2015; Chen and Mynett, 2006; Luijendijk, 2001; Rahman and Venugopal, 

2017; Roelvink and Banning, 1995; Vaz et al., 2019; Xu et al., 2017). The two modules, D-Flow 

and D-WAQ, can be integrated into a single model where each module can communicate the 

results to act as a single model. D-Flow can be used to simulate three-dimensional hydrodynamics 

of the waterbody and D-WAQ can be used to simulate the water quality and ecological conditions 

in the same computational grid. D-WAQ model uses Process Library Configuration Tool (PLTC) 

to simulate water quality for different functional groups including dissolved oxygen, particulate 

inorganic matter, organics matter, algae, bacterial pollutants, trace metals, vegetation, and higher 

trophic level. Each functional group includes biotic and abiotic processes in its simulations. D-

Flow and D-WAQ are also part of the latest developed Delft3D Flexible Mesh Suite (Delft3D 

FM). Delft3D–Flow, Wave and WAQ simulate for structured computational grids, whereas the 

latest version, Delft3D Flexible Mesh Suite, can compute for unstructured flexible mesh.  

Vaz et al. (2019) studied the algal growth in relation to water quality and ecological 

conditions, along the coastal waters of Portugal. Xu et. al. (2017) used Delft3D Flow and WAQ to 

assess emerging contaminants, atrazine and bisphenol A (BPA), of a reservoir which was 

responsible for around 50% of Shanghai’s water supply. A model employed for Kuwait Bay for 

hydrodynamics and water quality modeling used Delft3D to simulate dissolved oxygen (DO) for 

understanding the fish kill events in the bay (Alosairi and Alsulaiman, 2019).  

As mentioned above, Delft3D uses structured grid system and Delft3D FM can compute 

unstructured meshed grids. Each module provides the versatility in using coarse and fine grid 

systems and uses bilinear interpolation in discretization for grid solutions both in temporal and 

spatial dimensions. The versatility in computing large number of simultaneous processes requires 

calibration of large number of parameters. Delft3D requires high resolution temporal input data 



23 

 

for accurate computation, that it, it is data intensive. In case of multiple domain systems, the 

boundary conditions for smaller domain can be derived from a larger domain which needs to be 

nested. In such case, multiple domains can be nested together, but with restricted modeling 

capacities (Alosairi and Alsulaiman, 2019; Deltare, 2018; Deltares, 2018; Vaz et al., 2019; Xu et 

al., 2017). 

Understanding the governing factors, processes and mechanisms in hydrodynamics and 

algal blooms is the key in modeling, management practices and remediation of blooms. Studies 

conducted by Garcia et al. (2015), Vaz et al. (2019), and Xu et al. (2017) show that hydrodynamics 

played an important role in tracer and nutrient dynamics in coastal estuaries and bays. Manning’s 

roughness and bed friction were identified as key parameters in energy transfers in hydrodynamics 

and wave mixing. Vaz et al. (2019) concluded that temperature and nutrient limitations governed 

the algal growth kinetics in coastal lagoon of Portugal.  Studies using fuzzy logic model (Chen and 

Mynett, 2006) found that first-order kinetic denitrification and nitrification rates, adsorption rates 

and mineralization rates in sediments were the most relevant in Dutch coastal waters. Jian et. al. 

(2014) showed that nutrient availability and nutrient limitation were the most relevant factor in 

algal blooms (Jian et al., 2014). Alosairi and Alsulaiman (2019) concluded that hypoxia resulted 

from complex interactions between hydrodynamics, basin flushing time and nutrient loadings, and 

that further studies were required to understand the effects of individual components in the 

complex interactions between hydrodynamics and nutrient loading. 

 

4.4 Nutrient dynamics and algal blooms studies in the coastal bend 

Studies of the Texas Coastal Bend systems, including the Corpus Christi and Nueces Bay, 

suggested that freshwater inflows and hypersaline conditions have been the key factors in inducing 

algal blooms (Buskey, 1998; Wetz et al., 2017). Turner et al. (2015) established baseline nutrient 

dynamics with HABs and hypoxia formation using sampled data for inorganic nutrients, 

chlorophyll-a (an indicator for algae) and dissolved oxygen (DO) in Corpus Christi Bay, Texas. 

The study collected samples and performed statistical analysis for a dry year (October 2011 to 

September 2012). Phosphate had a mean concentration of 1.07 μmol/L with a maximum of 7.08 

and minimum of 0.00 μmol/L. Nitrate and nitrite had a mean of 0.89 μmol/L with maximum and 

minimum concentrations of 7.08 and 0.00 μmol/L, respectively. Ammonia had a mean of 1.07 

μmol/L with a maximum of 3.23 μmol/L and minimum of 0.00 μmol/L. Chlorophyll-a had a mean 
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of 5.35 μg/L concentration with a maximum of 18.11 and a minimum of 0.32 μg/L. Studies relating 

to salinity and algal blooms in Baffin Bay, Texas, showed that algal blooms were not restricted 

only by hyper-salinity, as was previously perceived. The temporal-spatial distributions of the algal 

blooms were also affected by precipitation and rainfall, and were not limited only to salinity (Cira 

and Wetz, 2019). Another study showed that high nitrogen concentrations in Baffin Bay linked to 

its susceptibility to algal blooms (Wetz et al., 2017). 

These previous studies (Cira and Wetz, 2019; Wetz et al., 2017) related algal blooms with 

hypersalinity, freshwater inflows, nutrient dynamics and precipitation but identifying the root 

causes underlying the blooms has seldomly been conducted. Since a variety of physical, biological, 

and chemical factors can affect the algal growth, further studies to pinpoint the root causes in the 

mechanisms of algal blooms are required as indicated by Cira et al. (2019). 

 

5. MODEL THEORY 

Delft3D is a two- and three-dimensional multi-disciplinary simulation tool developed by 

Deltares and is in use for over 30 years (Roelvink and Banning, 1995). It has several modules that 

can be used to simulate flow, wave, sediment transport, water quality, ecology and morphological 

developments (Deltare, 2018). Delft3D-Flow, Delft3D-Wave and Delft3D-WAQ modules were 

used to simulate hydrodynamics and water quality, simultaneously communicating between each 

module in this study. Delft3D–Flow and Wave were used for two- and three-dimensional hydro-

morpho-dynamic simulations. While Delft3D-WAQ was used to simulate nutrient dynamics and 

algal growth. A brief theoretical model background is presented below.  

 

5.1 Delft3D–Flow 

Delft3D-Flow module simulates the hydrodynamics and transport incorporating non-

steady flow and transport phenomenon resulting from tidal and meteorological forcing on a fitted 

grid. Delft3D Flow includes features such as tidal forcing, density driven flows for thermal 

discharges and Earth’s rotation effect (i.e., Coriollis force). The hydrodynamic conditions obtained 

from Delft3D Flow, for example, water elevations, densities, velocities, salinity, vertical eddy 

viscosity and diffusivity, can be communicated and interacted with other modules like Delft3D 

Wave and WAQ (Deltare, 2018). 
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Delft3D-Flow modeling system numerically solves for unsteady flow equations in two-

dimension for depth-averaged grids, and in three dimensions in all other cases. The equations of 

motion (in the horizontal directions), the continuity equation and transport equations are used. 

Further details can be found in the Delft3D- Flow manual (Deltare, 2018). In the Flow model, tidal 

forces and wind forces were accounted, at the open boundaries (water-water boundary).  The 

differential equations solved by Delft3D-Flow, that is, Navier-Stokes equation, is given by 

Equations 2-4 (Broomans, 2003): 

 

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z
= -

1

ρ0

 
∂p

∂x
+ν∆u-fx       (2) 

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
= -

1

ρ0

 
∂p

∂y
+ν∆v-fy       (3) 

∂w

∂t
+u

∂w

∂x
+v

∂w

∂y
+w

∂w

∂z
= -

1

ρ0

 
∂p

∂z
+ν∆w-fz-

ρ

ρ0

g      (4) 

 

where u, v and w represents the velocity components in the x-, y- and z directions, respectively, ρ 

and ρ
0
 are the density and reference density, respectively, p is pressure, g is gravitational 

acceleration, ν is the the kinematic viscosity, fx, fy and fz are the Coriolis force per unit mass 

components in the x, y and z directions, respectively and t is time. The Coriolis force components 

are defined by (fx, fy and fz)
T = -2Ω * (u,v,w)T, where Ω is the Earth’s rotation vector (Broomans, 

2003; Deltare, 2018). For depth averaged continuity, the equation solved by Delft3D for 

incompressible fluids over the total depth is expressed by Equation 5 (Deltare, 2018):  
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where U and V are depth averaged velocities in the horizontal directions, d is the depth below 

datum (horizontal plane of reference),  is water level with respect to datum,  √𝐺 and √𝐺 

are the coefficients to transform curvilinear to rectangular coordinates, ,  are the curvilinear 

coordinates, and Q is source or sink per unit cross-sectional area due to discharge/ withdrawal 

contributions. U and V are calculated using Equations 6 and 7 (Deltares, 2018c): 

 



26 

 

U=
1

d+
 ∫ u dz

c

d
= ∫ u dσ

0

-1
       (6) 

V=
1

d+
 ∫ v dz

c

d
= ∫ v dσ

0

-1
        (7) 

 

where u and v are the velocities in the horizontal x- and y- directions, respectively, c and d are the 

integral limits and 𝜎 is the vertical scaled coordinates. 𝜎 is calculated by Equation 8 (Deltare, 

2018): 

σ=
z- 

H
          (8) 

where z is cartesian coordinate in vertical direction and H is the depth at that point. 𝜎 has a value 

of 0 at the water surface and 𝜎 = -1 at the bed level. Q is calculated by Equation 9 (Deltare, 2018): 

Q= ∫ (q
in

-q
out

) dσ
0

-1
+P-E       (9) 

where qin and qout are the sources (into the grid) and sinks (out of grid), respectively, P is 

precipitation and E is evaporation. Further details can be found in conceptual and theoretical 

documentation of Delft3D Flow (Deltare, 2018).  

  

5.2 Delft3D-Wave 

 Delft3D Wave uses third generation Simulated Waves Nearshore (SWAN) model 

(Deltares, 2018b) for simulation. The SWAN model incorporates the discrete spectral balance 

equation which accommodates the random short-crested waves propagating simultaneously at 

different directions. The model also incorporates the wave propagations from refraction (due to 

variable depth), dissipation from white-capping (a specific type of wave breaking from steepness 

induced wave dissipation during which some air is entrained with the near-surface wave layer), 

bottom friction, non-linear wave-wave interactions and depth-induced wave breaking (Deltares, 

2018b, 2016) 

SWAN calculates two-dimensional wave action spectrum density for depth averaged 

models. SWAN uses the relative frequency and wave direction, in its processes. The action density 

is equal to the energy density over the relative frequency. The spectral action balance equation is 

defined by Hasselmann et al. (1973) and Whitham (1974) and shown in Equation (10) (Deltares, 

2018b): 
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where x, y and z are the Cartesian co-ordinates, t is time, cx and cy are the propagation velocities 

in the x- and y- directions, respectively, N is action density, cσ and c are the frequency and 

refraction propagation velocity in σ- & - spatial dimensions, and S is the source.  

 In Equation 10, the term 
∂

∂t
N corresponds to the time rate of change of action density, the 

terms 
𝜕

𝜕𝑥
𝑐𝑥𝑁,

𝜕

𝜕𝑦
𝑐𝑦𝑁,

𝜕

𝜕𝜎
𝑐𝜎𝑁,

𝜕

𝜕𝜃
cθN represent the propagation of action in x-,y- space, and 

relative frequency & refraction in the σ- & - space, respectively. The term 
S

σ
  represents the source 

term for the action balance equation with respect to energy density and non-linear wave-wave 

interactions and dissipation (Dingemans, 1997; Hasselmann et al., 1973; Mei, 1983; Whitham, 

1974). SWAN uses the empirical JONSWAP (Joint North Sea Wave Project) model for bottom 

friction (Hasselmann et al., 1973). Studies conducted by Hasselmann et al. (1973) found that the 

bottom friction coefficients for swell conditions is Cjon = 0.038 m2s-3. For fully developed wave 

conditions, Komen and Bouws (Bouws & Komen, 1983) suggested that Cjon = 0.068 m2s-3 can be 

used.  

 

5.3 Delft3D-WAQ 

Water quality modeling is a growing tool supporting integrated water management, water 

policies, alternative management approaches and for evaluating effective management and 

preventions (Janssen et al., 2019). Delft3D WAQ uses its integrated Process Library Configuration 

Tool (PLCT) from which substances and processes can be activated for simulations. Delft3D 

WAQ uses theoretical water quality and advection-dispersion transport equations to simulate the 

processes in natural systems. Figure I-4 shows the workflow schematics of Delft3D WAQ 

(Deltares, 2018c). 

Delft3D WAQ or D-Water Quality solves advection-diffusion reaction equations on 

predefined computational grids which can be used for modeling conservative substances like 

salinity, chloride, temperature, nutrients like ammonia, nitrate, phosphate etc., phytoplankton 

biomasses and sediments. The advection-diffusion equation solved for the transport of the 

conservative substances is shown in Equation 11 (Li et al., 2015): 
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where C is the concentration (kgm-3); fR(C,t) is the reaction term; Dx, Dy are dispersion coefficients 

in x- and y- directions, respectively (m2s-1); S is source term, 𝜈𝑥, 𝜈𝑦 are eddy viscosities (m2s-1) 

(due to horizontal turbulences).  

Delft3D WAQ can also be used to simulate for settling and resuspension of sediments, 

nitrification, and denitrification. More details can be found in the conceptual description in 

Delft3D-WAQ manual (Deltares, 2018c). D–Water Quality (Delft3D-WAQ) implements mass 

balances for state variables, for example, dissolved oxygen, nitrates and/or heavy metals in multi-

dimensions. Equation 12 represents a mass balance equation for advection-diffusion reaction 

(Deltares, 2018c): 

Mi
t+∆t=Mi

t+ ∆t* (
∆M

∆t
)

Tr
+ ∆t* (

∆M

∆t
)

P
+ ∆t* (

∆M

∆t
)

S
     (12) 

where Mi
t and Mi 

t+ t are the initial and final mass at the beginning and end of time step; the third 

term, ∆t* (
∆M

∆t
)

Tr
, is the changes of mass by transport, the fourth term, ∆t* (

∆M

∆t
)

P
, represents the 

physical, biochemical or biological changes and the last term,  ∆t* (
∆M

∆t
)

S
, represents the changes 

by source or sink. Physical, biochemical or biological processes include aeration, denitrification 

and/or primary production of phytoplankton. Change by source includes addition of mass, for 

example, inflows and other contributing sources to the computational grid system.  

Delft3D–WAQ also incorporates the advective transport across any sink or sources using 

Equation 13 (Deltares, 2018c): 

Txo

A =vxo
*A*C         (13) 

where Txo
A is the advective transport across boundary x = xo (g/s), x, xo are the boundaries during 

transfer and initial conditions, vxo is the velocity at x = xo (m/s), A is the surface area across the 

boundary at x=xo (m
2) and C is the concentration at x = xo (g/m3) and  For dispersive transport, 

Delft3D WAQ assumes that the substance exchange is proportional to the surface area and 

concentration gradient. The dispersive transport equation, adapted from the Fick’s diffusion law, 

used is Equation 14 (Deltares, 2018c): 

Txo

D = -Dxo
*A* (

∂C

∂x
) |

x=x0
       (14) 

where Txo
D is the dispersive transport (g/s), Dxo is the dispersion coefficient (m2/s), A is the surface 

area (m2) along the open boundaries for depth averaged water bodies, and 𝜕C/𝜕x is the 

concentration gradient (g/m4). The negative sign indicates that dispersion results in a net change 
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in transport from higher concentration to lower concentration. The transport equation for pollutants 

or nutrients from the source is expressed by Equation 15 (Deltares, 2018c): 

Tsrc = Qsrc * Csrc         (15) 

where Tsrc is the transport of nutrients (g/s), Qsrc is the discharge from the source (m3/s) and Csrc is 

the concentration of nutrients (g/m3). 

The model also incorporates the effect of temperatures on the rates of biochemical and 

biological processes. The rate constant is adjusted for first-order reaction rates according to 

Equation 16 (Deltares, 2018c): 

k=k
20

*kT
T-20

           (16) 

where k is the rate constant at temperature T (d-1), k20 is the rate constant at reference temperature 

20oC (d-1), kT is the temperature coefficient and T is the water temperature (oC). kT ranges between 

1.01 and 1.10 with a value of 1.04 at 10oC. Further details can be found in the Delft3D WAQ 

manual (Deltares, 2018c) 

The major components of the nutrient cycle in the model are dissolved inorganic nutrients, 

living organic matter (biomass), particulate inorganic nutrients and detrital organic matter. 

Dissolved inorganic nutrients, like nitrogen and carbon dioxide, are utilized by the primary 

producers for growth. Nitrogen, not being a conservative substance, is subjected to different 

transformation throughout the process. Nitrates (NO3
-) undergoes denitrification in anaerobic 

zones of the water system. Nitrate is reduced to elementary nitrogen, which can escape as nitrogen 

gas, through microbial processes. Elemental nitrogen can undergo nitrogen fixation by algae and 

specific bacterial species. When phytoplankton and other primary producers die, natural detrital 

organic matters can be produced and consumed by grazers, resulting in dissolved organic mater 

and particulates. The process produces easily degradable organic substance that are converted to 

inorganic species in a very short time range. This process is called autolysis. During modeling, the 

measured parameter used in the model, of particular interest, is Kjeldahl-Nitrogen which is the 

sum of ammonium and organic nitrogen (Equation 17). It can also be expressed as nitrate and 

nitrite substracted from total nitrogen (Deltares, 2018c). 

Kjeldahl-N = ammonium + organic nitrogen    (17) 

Phytoplankton, being a primary producer, uses solar energy or light and organic matter for 

growth. Nitrogen is an esstential nutrient for growth and primary productions of phytoplankton to 

form cell proteins like enzymes, genetic material and chlorophyll-a (which utilizes light as well). 
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Nutrients, due to anthropogenic activities, can have increased presence in water which can 

accelerate the growth of these phytoplanktons and create a nuissance, like deficit in dissolved 

oxygen and light penetrating capabilities limiting the sustainability of other aquaitc plants and 

organisms resulting in eutrophication. Eutrophicaiton can cause low oxygen levels even below the 

minimum oxygen required by the the respiration of the increased phytoplanktons, and increased 

biodegradation process from deaths of other aquatic species. Cyano bacteria, a certain type of 

phytoplankton, can release toxins which have detremental effects to primary and secondary 

consumers and to humans (respiratory diseases) (Deltares, 2018c; Fasham et al., 1990; Kim and 

Montagna, 2012; Kingsford, 2000; Steele and Henderson, 1981). 

A portion of the nutrients stays as dissolved inorganic nutrients through autolysis and the 

other part stays as dissolved or particulate detrital organic matter. The autolysis is followed by 

microbial decomposition, during phytoplankton death and decomposition, which releases nutrients 

and carbon back into their inorganic (dissolved) forms. Oxygen, nitrates, sulfates and iron (III) are 

used as electron-acceptors and result in pH variation as alkalinity and carbon dioxide are consumed 

during autolysis and phytoplankton growth (Deltares, 2018c).  

The Delft3D WAQ model incorporates BLOOM and DYNAMO modules. The BLOOM 

model simulates multi-algal species whereas DYNAMO model simulates the primary production 

of the phytoplanktons. In the DYNAMO model, two types of algae are considered, that is, diatoms 

and all non-diatoms, also known as ‘greens’, not to be confused with green algae. The diatoms use 

silica as its essential element whereas non-diatoms do not. DYNAMO can be used to study 

eutrophication focusing on mass balances of nutrients, nutrient dynamics and the primary effects 

of the change of nutrient loads on algal growth (Deltares, 2018c; Jian et al., 2014; Vaz et al., 2019). 

The mass balance used in the DYNAMO model is given by Equation 18 (Deltares, 2018c): 

∆Phytoplankton

∆t
=loads + transport - settling + resuspension + 

+gross primary production-respiration-mortality   (18) 

where 
∆Phytoplankton

∆t
 is the rate of change of phytoplankton biomass, loads is the inflow algal mass 

into the model, ‘transport’ is the algal mass transport out of the modeling boundary, ‘settling’ and 

‘resuspension’ is the settling and resuspension of the algal biomass due to intermixing and swell 

conditions, and ‘gross primary production’ is the mass increase/decrease of algae. The oxygen 

produced by the phytoplanktons is proportional to the gross production of organic matter. The 
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algae, during ‘respiration’, consumes dissolved oxygen and can deplete it rapidly during 

eutrophication. Respiration is the sum of respiration during growth and maintenance which is 

proportional to the algal biomass. The mortality of algae is proportional to its biomass 

concentration and its overall mortality rate, both of which are dependant on temperature and 

salinity.  

In the DYNAMO model, the gross primary production is calculated using Equation 19 

(Deltares, 2018a): 

Rgpi
=fnuti

*flti
*kgpi

*Calgi
       (19) 

where Calgi is the algal biomass concentration (gC m-3), flti is the light limitation factor, fnuti is the 

nutrient limitation factor according to Monod kinetics, kgpi is the potential gross primary 

production rate (day-1), Rgpi is the gross primary production rate (gC m-3 d-1) and i is the index for 

species group, that is, diatoms or algae. The nutient limitation factor for the DYNAMO considers 

the most limiting nutrient according to Equation 20 (Deltares, 2018a): 

fnuti
= (

Cn

Ksn+Cn
) , (

Cph

Ksph+Cph

) , (
Csi

Kssi+Csi
)      (20) 

where Cn is the ammonium plus nitrate concentration (gN m-3), Cph is the phosphate concentration 

(gP m-3), Csi is the dissolved inorganic silicate concentration (gS m-3), and Ksn, Ksph and Kssi are 

the half-saturation constants for nitrogen, phosphate and silicon (g m-3), respectively.  
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6. MODEL SETUP 

Delft3D–Flow-Wave coupled model and Delft3D WAQ were used to simulate 

hydrodynamics and nutrient transport phenomenon. To simulate the phytoplankton growth, the 

DYNAMO module of Delft3D WAQ was used. Algal (non-diatoms) growth was simulated using 

DYNAMO module of Delft3D-WAQ, which used the hydrodynamic results obtained from the 

Delft3D Flow and Wave to simulate the overall primary production of total algal biomass. For this 

study, nitrogen as the limiting nutrient for eutrophication in coastal estuaries (Turner et al., 2014, 

2015; Vaz et al., 2019), was focused. 

 

6.1 Study Area 

The study area, Nueces Bay, is located in the City of Corpus Christi, Nueces County, South 

Texas. Nueces Bay is a large shallow estuary, with large dimensions in the horizontal x- and y- 

dimensions in comparison to the depth of the bay. It is bounded by land in three directions, that is 

North, West and South, with a small open boundary with Corpus Christi Bay to the East. Nueces 

bay receives freshwater inflows, sediments, and nutrients through Nueces River from the South-

West direction of the bay. Nueces Bay is surrounded by the urban developments, industries, 

agricultural farms, and recreational facilities. Nueces Bay (NB) receives its flow, sediments and 

nutrients from the large semi-arid Nueces River Basin (NRB) through the point of confluence 

between Nueces River (NR) and NB (Figure I-3). Over the past few decades, Nueces Bay and 

Corpus Christi Bay have observed harmful algal blooms, fish kills and economic disruptions which 

have impacted the economic growth, human and environmental health (NOAA, 2016; TPWD, 

2019b). Excessive nutrients due to anthropogenic activities and climate change are cited to be the 

potential cause for the environmental disasters (Dodds et al., 2009; EPA, 2015).  
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Figure I-3. Study area and geographical locations of stations to be used for model input, 

calibration and validation. 

 

6.2 Model Input 

In this study a depth averaged three-dimensional grids were used since Nueces Bay is a 

large shallow well mixed estuary with an average depth of 2.40 m (Buskey, 1998; Islam et al., 

2014). Table I-1 lists the input parameters and its corresponding values that were used in the 

calibration of Delft3D–Flow-Wave model. The threshold depth, that is the minimum depth above 

which a grid cell would be considered to be ‘wet’ for discretization, peak enhancement factor for 

waves, the bottom friction coefficient (Cjon), wave breaking parameter (α), Manning’s roughness 
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coefficient (n) and horizontal Eddy viscosity and diffusivity were used to simulate wave growth 

due to wind and/or tidal forces. The wind speed, wind direction and temperature data were 

collected from NOAA station (ID#8775244) and the salinity data was collected from USGS station 

(ID#08211503) (Figure I-3). Linear interpolation method was employed in the model to fill any 

missing data in the input datasets. 

 

Table I-1. Input parameters and values used during calibration for Delft3D–Flow & Wave 

model. 

Parameters  

Values used 

during 

calibration 

Sources and references* 

Threshold depth, m 0.1 Deltares (2018) 

Peak enhancement factors 3.3 Deltares (2018) 

Bottom friction coefficient, Cjon (m
2/s3) 0.067 Deltares (2018) 

Wave breaking parameter, α 1.0 Deltares (2018) 

Horizontal Eddy viscosity and 

diffusivity (m2/s) 
1 Deltares (2018) 

Manning's coefficient, n 0.02 Deltares (2018) 

Wind speed, m/s From field data NOAA, station ID#8775244 

Wind direction, degree From field data NOAA, station ID#8775244 

Salinity, ppt From field data USGS, station ID#08211503 

Temperature, oC From field data USGS, station ID#08211503 

* Sources and references used for initial parameters’ values used during calibration. 

 

Table I-2 lists the parameters and their values used to calibrate Delft3D WAQ model. The 

hydrodynamics results from Delft3D Flow-Wave model (Table I-1), for example, salinity, 

bathymetry, wind speed and direction, change in depths, wave growths etc., were integrated as 

inputs to Delft3D WAQ model. Temperature functions for growth and mortality were employed 

to simulate the growth of algae as many reaction kinetics are dependent on temperature (Deltares, 

2018c). The algal respiration factor, growth respiration factor, mortality rate, primary production 

rate, maximum production rate, half-saturation constants for nitrogen and phosphorous, and 

temperature coefficient for growth and respiration were initially adopted from sources as tabulated 

below in Table I-2 (Jian et al., 2014; Schladow and Hamilton, 1997) and adjusted to the calibrated 

values.  
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Table I-2. Input parameters and values used during calibration for Delft3D-WAQ model. 

Input parameters  Code Names 
Value 

Range 

Values 

Used* 

Sources and 

References1 

Salinity, ppt     model*** Delft3D-Flow-Wave 

maintenance respiration 

Green temp, 1/d 
MRespGreen 0.05-0.17** 0.05 Schladow et al. 1997 

growth respiration factor 

Green, 1/d 
GRespGreen 0.05-0.17** 0.085 Schladow et al. 1998 

mortality rate Greens, d-1 RcMrtGreen 0.005-0.5** 0.35 Delft3D WAQ  

wind speed Vwind   model*** Delft3D-Flow-Wave 

maximum production rate 

Green (1/d) 
PPMaxGreen 1.3-3.6** 1.2 Schladow et al. 1997 

half-saturation value N 

Greens, gN/m3 
KMDINgreen 

0.020-

0.20** 
0.03 Schladow et al. 1997 

half-saturation value P 

Greens, gP/m3 
KMPgreen 

0.001-

0.025** 
0.002 Schladow et al. 1997 

temperature coefficient 

for growth 
TcGroGreen 1.02-1.14** 1.04 Schladow et al. 1997 

temperature coefficient 

for respiration 
TcDecGreen 1.02-1.14** 1.07 Schladow et al. 1997 

Note: * Values used during calibration. ** Ranges of values used during calibration (Deltares, 

2018c; Jian et al., 2014; Schladow and Hamilton, 1997). *** Values obtained from Delft3D-Flow-

Wave model. 1Sources and references for initial parameter values used during calibration. 

 

Bathymetric data was obtained from General Bathymetric Chart of the Oceans (GEBCO 

08 datum) gridded data. The GEBCO 08 database was integrated with Delft3D Dashboard (DDB), 

which was used to generate the bathymetry for Nueces Bay. Figure I-4 shows the depth of Nueces 

Bay using GEBCO 08 datum in WGS 84/UTM zone 14-N Projected cartesian coordinate system 

with Easting in the x-axis and Northing in the y-axis. Easting and Northing are measured in meters 

with respect to central meridian and equator as their datum. 
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Figure I-4. Coordinate grid showing bathymetry of Nueces Bay (GEBCO 08 datum). Negative 

values indicate land boundary. 

 

6.3 Model Grid, Boundaries, Initial and Boundary Conditions 

Delft3D Dashboard (DDB) was used to generate the Delft3D–Flow-Wave model using 

World Geodetic System 84 - Universal Transverse Mercator Zone 14 (WGS 84/ UTM Zone – 14 

Projected) coordinate system (WGS 84 / UTM Zone 14N, 2020). A grid of 182 x 72, which results 

in approximately 75 m x 75 m grids, was used to model the study area (Figure I-5). The gridded 

model has open boundaries to the east and south of the model domain, and closed boundaries on 

the north, north-west and southwest regions of the gridded model domain. The confluence at the 

Nueces River and Nueces Bay to the south-west of the model domain was modeled as open (water-

water) boundary for nutrient transport. The depth of the bay is represented by elevation levels, that 

is, from zero meters (0 m) to negative fifteen meters (-15 m) (Figure I-5).  
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Figure I-5. Map showing the depth (bathymetry), open (water-water) boundaries and closed 

(land-water) boundaries of Nueces Bay. 

 

The open boundaries at the south and east of the gridded model domain represent the water-

water interaction boundary. The closed boundaries on the north, north-west and south-west 

direction of the simulated area represents the land-water boundaries.  The harmonic components 

for the inputs to open boundary conditions (east and south of model domain) were used from the 

harmonic constituent data obtained from NOAA Station ID # 8775244  (NOAA, 2019) and TPXO 

8.0 Global inverse model which is integrated with DDB (Delft3D Dashboard). Nutrient data from 

TCEQ 13422 station (Figure I-3) were used for nutrient transport and exchanges at the open 

boundaries (east and south of model domain). Time series forcing, nutrient, chlorophyll-a and 

water level data were used at the open boundary (south-west of model domain). At the lateral 

boundaries, Reimann boundary conditions were imposed so that waves do not reflect back into the 

model domain (Wang et al., 2019). In coastal areas, the tidal forcing along the open boundaries 

suffices in generating the accurate and appropriate tidal motion (Mao et al., 2015; Powell et al., 

2002; Ritter, 2005; Roelke et al., 1997). Table I-3 shows the initial conditions used in the model 

at the simulation start time, i.e., August 05th, 2016. Astronomic forcing used at the open boundaries 

to the east and south of the model domain was defined in terms of the harmonic constituents, as 

listed in Table I-4. 

. 
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For vertical boundary, a maximum vertical height of zero meters, corresponding to mean 

sea level, was used (Figure I-5). For Delft3D WAQ, the boundary condition was the algal 

concentration along the open boundary which was the same as the concentration for Corpus Christi 

Bay and/or at TCEQ 13422 (Figure I-3), with Thatcher-Harlem time lag of zero.   

Delft3D uses the initial conditions, boundary conditions, transport across boundaries, grid, 

model forcing and input parameters, to numerically solve for finite difference grid systems using 

finite volume methods. A simple approximation of implicit finite difference is calculated using 

Crank-Nicholson method. Delft3D then solves for tri-diagonal systems of equations for t+t, 

where t is the time step used. Using continuity equations, mass-balance, and implicit time 

integration methods, Delft3D simulates and produces outputs at integer multiples of time intervals 

for concentrations, velocities, etc. Further details are available in the Delft3D-Flow, Wave and 

WAQ theoretical and conceptual documentation (Deltare, 2018, p. 3; Deltares, 2018b, 2018c).   

 

Table I-3. Initial input used for Delft3D-Flow-Wave simulations at simulation start time. 

Description Value Units Source 

Water level 0.35 M NOAA St ID# 8775244 

Salinity 1.7 ppt USGS St ID# 08211503 

Temperature 32.9 C NOAA St ID# 8775244 

Total N 0.0009 kg/m3 TCEQ St ID #12960 
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Table I-4. Boundary conditions defined by astronomical components and their values at the 

water-water open boundaries of the model domain for Delft3D Flow-Wave model. 

Constituent 

Name* 

Amplitude 

m* 

Phase 

deg* 

Speed 

deg /hr* 
Description 

M2 0.02 65.50 28.98 
Principal lunar semidiurnal 

constituent 

S2 0.00 5.90 30.00 
Principal solar semidiurnal 

constituent 

N2 0.00 38.60 28.44 
Larger lunar elliptic semidiurnal 

constituent 

K1 0.06 137.20 15.04 Lunar diurnal constituent 

M4 0.00 345.30 57.97 
Shallow water over tides of 

principal lunar constituent 

O1 0.07 116.60 13.94 Lunar diurnal constituent 

MN4 0.00 316.80 57.42 
Shallow water quarter diurnal 

constituent 

MM 0.00 0.00 0.54 Lunar monthly constituent 

MF 0.00 0.00 1.10 Lunisolar fortnightly constituent 

Q1 0.01 96.90 13.40 
Larger lunar elliptic diurnal 

constituent 

P1 0.03 139.30 14.96 Solar diurnal constituent 

K2 0.01 56.10 30.08 Lunisolar semidiurnal constituent 

MS4 0.00 0.00 58.98 
Shallow water quarter diurnal 

constituent 

 

*Source: TPXO 8.0 Global Inverse Tide model, Delft3D Dashboard and NOAA 8775255 Station 

harmonic constituents (Deltare, 2018; NOAA, 2019). 

 

6.4 Simulation Time Steps 

The period of simulation for the study selected was from August 05th, 2016 to November 

30th, 2019. The reference date (simulation start time) was August 05th, 2016. The time step for 

simulation was determined based on the CFL (Courant-Friedrichs-Lewy number) using Equation 

21 (Deltare, 2018): 

CFL=
∆t√gH

{∆x,∆y}
         (21) 

where ∆𝑡 = simulation time steps (min), g is gravitation acceleration (m/s2), H is maximum water 

depth (m), ∆x, ∆y = characteristic value, that is, minimum of grid spacing values in either of the 

x- or y-directions. Rearranging Equation 21, Equation 22 was obtained,  



40 

 

∆t=
CFL*{∆x,∆y}

√gH
         (22) 

Using Equation 22 with a maximum CFL value of 10, as suggested by Delft 3D model developers 

for smooth discretization (Deltare, 2018), a minimum characteristic value (the minimum of 

{∆x, ∆y = 182, 72} which is 72), 9.81 m/s2 for g and a maximum value of 15 m for H (obtained 

from bathymetric data using DDB and GEBCO 08), yielded a maximum time step of 60 minutes. 

In order to achieve a smooth discretization, a time step of 5 minutes was used in this study. 

 

7. MODEL SIMULATION, CALIBRATION, VALIDATION AND SENSITIVITY 

ANALYSIS 

7.1 Simulating effects of wind on wave growth (significant wave height generation) 

To evaluate the impacts of wind on wave growth and to determine the type of forcing, 

Delft3D–Wave standalone model was used to simulate short-crested random wind generated 

waves. Wave actions were studied for both swell and the fully developed wave conditions 

(Deltares, 2018b). Wind speeds were applied uniformly throughout the Nueces Bay ranging from 

0 to 20 m/s or 0 to 45 mph (approximately) to generate for swell and high wind conditions 

reflecting wind speeds during rainfall and level 1 hurricanes (20 m/s) (“Hurricanes.” World Book 

Encyclopedia., 1998). Previous researches have shown that at high hydrodynamic mixing 

conditions, there was no/low algal growth (Shen et al., 2019). Thus, higher level hurricane and 

wind conditions were not simulated. Wind directions were applied uniformly on the bay in the 

north and south (nautical) directions. The north and south wind forcing were used to observe the 

wave generations when the wind was moving South for colder seasons and when the wind was 

moving North for warmer seasons, respectively. The wind speeds and directions used are tabulated 

below in Table I-5. 

 

Table I-5. Wind speed and direction used in Delft3D–Wave standalone model to simulate wave 

growth. 

Wind speeds, 

m/s 

Wind speeds, 

mph 

Wind directions, 

Nautical 

0 0 0, 180 

5 11 0, 180 

20 45 0, 180 
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7.2 Model calibration and validation 

 Delft3D Flow-Wave coupled model was calibrated using simulated water level at station 

point #1 which has the same coordinates as NOAA station ID # 8775244 Nueces Bay, TX (Figure 

I-3). Studies conducted by Williams and Esteves (2017) showed that for wave modeling, one or 

two tidal cycles, is enough to assess the performance of the model and the necessary corrections 

that might be required. Thus, the water level and tidal data were calibrated using one or two tidal 

cycles for Delft3D-Flow-Wave coupled model using the parameters listed in Table I-1. For 

Delft3D WAQ model, calibration was conducted using the parameters listed in Table I-2. 

Coefficient of determination (r2), Nash-Sutcliff efficiency coefficient (NSE), percentage bias 

(PBIAS) and RSR (RMSE-observation standard deviation ratio) were calculated and used as 

statistical indicators for the evaluation of model’s performance and goodness-of-fit during model 

calibration and validation.  

Coefficient of determination (r2) obtained from regression analysis was used to evaluate 

the degree of collinearity between the simulated and measured data with r2 ranging from zero to 

one (0 to 1). An r2 value close to one indicates the least error variance between the simulated and 

measured data. Values greater than 0.50 are typically considered to be acceptable (Santhi et al., 

2001; Van-Liew et al., 2007).  

Nash-Sutcliff Efficiency coefficient is the dimensionless measure of the relative ‘noise’ 

(residual variance) compared to observed data variance (‘information’) (Nash and Sutcliffe, 1970). 

NSE can vary from -∞ to 1.0. NSE having a value close to or equal to 1.0 is ideal and it indicates 

how “well” the observed versus simulated plot fits with the line of 1:1 with zero y-intercept. An 

NSE value less than zero (NSE ≤ 0) indicates that the mean of the observed value is a better 

predictor than the simulated values. The NSE is calculated using Equation 23 (Nash and Sutcliffe, 

1970): 

NSE= 1- [
∑ (Yi

obs - Yi
sim

)n
i=1

2

∑ (Yi
obs - Yi

sim
)n

i=1

2]        ( 23) 

where Yi
sim, Yi

obs and Yi
mean are the ith simulated, observed and mean data, respectively and n is 

total number of observations.  

PBIAS and RSR were used as error indexes to evaluate model’s goodness-of-fit. PBIAS 

or percent bias indicates the (average) tendency of deviation of simulated data from observed data 

(Gupta et al., 1999). Ideal value would be 0.0 for PBIAS, indicating that the simulated values are 
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accurate and unbiased. Positive and negative PBIAS values are indicative of under- and over-

estimation bias, respectively. PBIAS was calculated according to Equation 24 (Gupta et al., 1999): 

PBIAS= [
∑ (Yi

obs - Yi
sim

) x 100n
i=1

∑ (Yi
obs

)n
i=1

]       (24) 

RSR or the Root Mean Squares of Error’s (RMSE) observation standard deviation ratio is 

a commonly used statistical error index (Shirmohammadi et al., 2004; Singh et al., 2004; Vazquez-

Amabile et al., 2005). An RSR value of 0.0 is ideal and would indicate that there is zero residual 

variation or zero RMSE. RSR was calculated by the ratio of the standard deviation of observed 

data and RMSE using the Equation 25 (Moriasi et al., 2007) and Table I-6 provides the list of 

recommended statistics generally used in performance rating for a monthly time-step simulation. 

RSR=
RMSE

StdDev.obs
 =

√∑ (Yi
obs - Yi

sim)
2

n
i=1

√∑ (Yi
obs - Yi

mean)
2

n
i=1

      (25) 

  

Table I-6. Recommended statistics and general performance rating (Moriasi et al., 2007). 

Performance 

rating 
RSR NSE 

PBIAS (%) 

Streamflow N, P 

very good 0.00≤RSR≤0.50 0.75≤NSE≤1.00 PBIAS <±10 PBIAS <±25 

good 0.50≤RSR≤0.60 0.65≤NSE≤0.75 ±10≤PBIAS <±15 +-25≤PBIAS <±40 

satisfactory 0.60≤RSR≤0.70 0.50≤NSE≤0.65 ±15≤PBIAS <±25 ±40≤PBIAS <±70 

unsatisfactory RSR≥0.70 NSE≤0.50 PBIAS ≥ ±25 PBIAS ≥ ±70 

 

The simulation period for Delft3D Flow-Wave was chosen from August 05th, 2016 to 

August 31st, 2020. Delft3D Flow-Wave and Delft3D WAQ model were calibrated from August 

2016 to August 2018 and validated from September 2018 to August 2020. Since algal blooms 

occur over a short period of time and at exponential rates (Alosairi and Alsulaiman, 2019; Chen 

and Mynett, 2006; Lung and Paerl, 1988; Xu et al., 2017), to study the diurnal effects on algal 

growth, outputs from WAQ model were extracted at 60 minute intervals for the simulations 

conducted from September 25th, 2016 to November 30th, 2016. Providing approximately two 

months of warmup period, the models were calibrated from October 01st, 2016 to October 31st, 

2016 and validated from November 01st, 2016 to November 30th, 2016, for water levels. The time 
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period of September 25th, 2016 through November 30th, 2016 was chosen based on the latest algal 

blooms reported in the Nueces Estuary by Texas Parks and Wildlife Department (TPWD, 2019a). 

 

7.3 Sensitivity analyses of model input parameters 

Sensitivity analysis of Delft3D models was performed based on Equation 26 (Xu et al., 2020): 

S=
(

Xi -Xbase
Xbase

)

(
Pi-Pbase

Pbase
)

         (26) 

where Xi is the simulated value of the output quantity corresponding to ith parametric values (for 

example, output value of X at 120% or 150% or 50% of parametric base-value, Pbase), Xbase is the 

output value of the quantity corresponding to base parametric value (for example, output value of 

X at parametric base value, Pbase). The parametric base values were the parameter values obtained 

from the model calibration.  

Table I-7 lists the parameters and their corresponding calibrated parametric base values that 

were used in Delft3D Flow-Wave model and Delft3D-WAQ model, for sensitivity analyses. The 

bottom friction coefficient parameter and Manning’s n were used for Delft3D Flow-Wave 

sensitivity analyses, as studies show that these parameters have the most impact on wave growth 

and water level outputs (Deltare, 2018; Garcia et al., 2015; Rahman and Venugopal, 2017; 

Roelvink and Banning, 1995; Xu et al., 2017). For Delft3D WAQ model, sensitivity analyses 

focused on maximum growth rate, respiration factor, nutrient limitation function and mortality 

rate. The sensitivity analyses were carried out by varying each individual parameter while keeping 

the rest of the parameter constant at their calibrated values.    
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Table I-7. Parameters and their base values used in sensitivity analyses. 

Parameters  
Calibrated parametric 

base values 

Delft3D- Flow -Wave model  

   Bottom friction coefficient, Cjon (m
2/s3) 0.067 

   Manning's coefficient, n 0.02 

Delft3D- WAQ model  

   Maintenance respiration Green temp, 1/d 0.05 

   Maximum production rate Green, 1/d 1.2 

   Half-saturation value N Greens, gn/m3 0.03 

   Half-saturation value P Greens, gp/m3 0.002 

   Temperature coefficient for growth 1.04 

   Growth respiration factor Green, 1/d 0.085 

   Temperature coefficient for respiration 1.07 

   Mortality rate Greens, d-1 0.085 

 

7.4 Model Application 

After calibration and sensitivity analysis, effects of extreme high/low inflows, wind speeds, 

and nutrient loads on hydrodynamics, nutrient and algal dynamics were evaluated using Delft3D 

Flow-Wave and WAQ models. Ten years (2011 to 2019) of available data from TCEQ station 

ID#12960, USGS station ID# 08211500 and USGS station ID#08211503 (Figure I-3) were 

collected, from which the maximum and minimum inflows, wind speeds, chlorophyll-a (chl-a), 

temperature and nutrients were used as model inputs (Table I-8).  

Scenarios simulation to demonstrate the effect of high/low inflows, wind speeds, 

temperature, and nutrient and chlorophyll-a loads on algal growth at TCEQ station ID# 13422 

(Figure I-3) were conducted using the extreme high and low historical data, as tabulated in Table 

I-8. TCEQ station ID#13422 was selected to study the effect of inflows from Nueces River. The 

inflows, that is, freshwater inflows, chlorophyll-a (chl-a) and total nitrogen (TN), through Nueces 

River to Nueces Bay, were added to the model through the discharge point (see ‘inflow from 

Nueces River’, Figure I-3). The simulation period was between October 2016 to November 2016, 

that is, during the HAB event. The meteorological data, that is, wind and water temperature, were 

imposed uniformly throughout Nueces Bay. The highest recorded wind speed and direction, from 

the whole simulation period, was uniformly applied as model input during the simulation period 

to demonstrate the effect of wind on algal growth. The effects of highest and lowest water 
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temperature were also simulated in the study. All the hypothetical scenarios’ simulations were 

compared with the calibrated base model.  

 

Table I-8. Freshwater inflows, total nitrogen, chlorophyll-a, wind speed and temperature values 

used in scenarios analysis to demonstrate their effects. 

 

Inflow,  

m3/s 

Total nitrogen, 

mg/L 

Chl-a,  

µg/L 

Wind speed, 

mph 

Temperature, 
oC 

High 

80.0 

(Oct. 2018) 

3.0  

(Jul. 2018)  

134.0 

(Jul. 2017) 

60.0 

(Mar. 2018) 

32.4 

(Aug. 2018) 

Low 

0.01  

(Aug. 2016) 

0.9 

 (Oct. 2016) 

4.4  

(Jan. 2019) 

4.0 

 (Oct. 2018) 

4.9 

 (Jan. 2018) 

 

8. FIELD SAMPLING IN NUECES BAY 

Water quality data were collected from Nueces Bay at 3-month intervals beginning in 

August 2019 and ending in August 2020, for a total of 5 sampling trips. These samples were 

collected to assist with ground-truthing the modeling efforts to understand the relationship between 

water quality and phytoplankton biomass, and especially the factors leading to rapid increases in 

phytoplankton biomass known as blooms. Samples and data were collected from an outboard 

motor boat at 6 stations (Station #1 - #6 shown in Figure I-3) within Nueces Bay, and water 

samples were collected at various depths using a Wildco Alpha Horizontal water bottle (2.2-liter 

capacity). Water samples were collected for analysis of inorganic nutrients (N, P, Si), extracted 

chlorophyll a (as a proxy for phytoplankton biomass) and whole water samples for analysis of 

biological oxygen demand (BOD). Nutrient concentration measurements were made using a 

Lachat QuikChem 8500 nutrient autoanalyzer, with duplicate samples collected at each location. 

Water quality parameters were also collected at various depths at each station using a YSI EXO 

water quality data sonde, with probes to measure water temperature, specific conductivity 

(salinity), pressure (depth), oxygen, pH, turbidity, and in vivo chlorophyll a.  

Three of the stations were located in the western half of Nueces Bay, near the head of the 

estuary where the Nueces River enters (Stations 1, 2 and 5, Figure I-4) and the other three stations 

were located in the eastern half of Nueces Bay, further from the river and closer to the connection 

with Corpus Christi Bay (Stations 3, 4 and 6, Figure I-4). The mean depth over all sampling efforts 

at each station varied from 0.9 m at Station 5 to 1.8 m at Station 4. Water temperature and salinity 

measurement taken from the surface, mid depth and near bottom at each station all showed similar 
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values, indicating that this shallow water column was well mixed, and showed no indication of 

density stratification. Mean inorganic nutrient concentrations of phosphate ranged from 4.0 uM L-

1 at Station 3 to 6.8 uM L-1 at Station 5, while combined inorganic nitrogen from ammonium, 

nitrate and nitrite ranged from 1.8 uM L-1  at Station 3, to 4.9 uM L-1 at Station 6. N:P ratios ranged 

from 0.32 at Station 2 to 0.73 at Station 6. All N:P ratios were less than one, which is well below 

the Redfield Ratio average for seawater of 16, which indicates potentially strong nitrogen 

limitation of primary production in Nueces Bay. It should be noted that organic forms of N were 

not measured, so organic N may have contributed to phytoplankton primary production in this 

system. Measurements of silicate were very high throughout this study at all stations and sampling 

seasons, with values ranging from 50 to over 400 uM L-1. Silicate is required by diatoms, a 

common group of phytoplankton in marine environments. There is no indication that availability 

of silicate would limit diatom growth.  

Measurements of extracted chlorophyll a were obtained by filtering a known volume of 

whole seawater onto a GF/F glass fiber filter in a darkened room and extracted in 10 ml of 90% 

acetone overnight in a refrigerator. Analysis was performed the next day using a Turner Designs 

Trilogy fluorometer. Mean values of chlorophyll a ranged from 10 ug L-1  at Station 4 to 20.3 ug 

L-1  at Station 6. These estimates of phytoplankton biomass are within the normal range for 

estuaries in South Texas, and do not indicate either eutrophication through excess nutrient loads 

or low productivity due to nutrient limitation.   

Biological Oxygen Demand (BOD) is a bioassay procedure that measures the oxygen 

consumed by bacteria during the decomposition of organic matter at a constant temperature in the 

dark. Upon returning from the field, four BOD bottles were filled from each station; two from each 

of two replicate water samples. An initial oxygen reading was taken for each bottle using a Hach 

HQ30d oxygen meter. Bottles were then filled and sealed with the ground glass cap, ensuring there 

were no air bubbles trapped inside. Bottles were wrapped in aluminum foil to exclude light and 

were incubated in the dark for 5 days in an incubator set at 20 oC. At the end of the incubation 

period the oxygen concentration was measured again, and the difference between starting and 

ending concentrations of oxygen is the BOD. 

The mean BOD for each station averaged over all the sampling dates ranged from 2.1 mg 

O2 per liter at Station 4 to 3.7 mg O2 per liter at Station 6, All of these measures of BOD fall within 
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the normal range of values for unimpacted estuarine waters, and show no evidence of a high load 

of dissolved or particulate organic matter in the water column during the course of this fieldwork. 

Other measures of water quality were recorded in the field using the YSI EXO data sondes 

include dissolved oxygen, pH and turbidity. Mean oxygen concentrations measured throughout the 

year at each station ranges from 6.2 mg O2 per liter to 6.9 mg O2 per liter. This represents a percent 

oxygen saturation range of 89.7% to 97.2%, indicating that there was no evidence of hypoxia 

during our period of study. The mean values of pH varied little over the year we collected 

measurement, with the mean values for each station ranging from 8.0 to 8.2. This does not indicate 

that there is any issue related to ocean acidification in the Nueces estuary. Turbidity was measured 

at three depths at each station, and there was a consistent trend of slightly increasing turbidity with 

depth at each station. This indicates that turbidity was due in part to resuspension of fine sediments 

near the bottom by surface wave mixing and tidal currents. The mean values for surface turbidity 

ranged from 10.1 ntu at station 3 to 30.7 ntu at station 5. 

In vivo measures of chlorophyll a fluorescence were also made with a chlorophyll probe 

on the YSI water quality sonde. This method measures the chlorophyll a contained within living 

phytoplankton cells within the seawater, rather than measuring the chlorophyll extracted from 

phytoplankton in the laboratory. These values ranged from 6.0 ug/L chlorophyll a from surface 

samples at station 4 to 13.5 ug/L chlorophyll a at Station1. These measures are lower than the 

values than those for extracted chlorophyll taken at the same location, as is often the case. 

Chlorophyll molecules within the chloroplasts of phytoplankton cells may be shaded to the UV 

light used to elicit their fluorescence, leading to lower values than when the chlorophyll molecules 

are extracted into solvents. There was only minor variance in chlorophyll a measurement with 

depth, again indicating that the shallow water column was well mixed.  

There were clear seasonal patterns in water temperature, with minimum water temperatures 

of approximately 20 oC measured during sampling trips in November 2019 and February of 2020, 

and maximum temperatures of approximately 30 oC measured in August 2019 and August 2020. 

There was lower variability of salinity with season, with maximum salinity measured in November 

2019 of about 32 psu at all stations and minimum salinity of about 24 psu at the three stations 

closest to the Nueces River (Stations 1, 2 and 5) and higher salinities of about 31 psu at Stations 

3, 4 and 6 further from the river. No clear patterns of seasonal variation in inorganic nutrient 

concentrations or phytoplankton abundance were observed. 
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9. RESULTS 

9.1 Wave growth and hydrodynamic mixing 

Effects of wind, bottom friction and tidal forces were simulated for wave growth using 

Delft3D-Wave standalone model. Figure I-6 andFigure I-7 show the significant wave height 

produced at the NOAA station ID # 8775244 (Figure I-3) and the corresponding parametric effect 

on wave growths for different wind speeds, wind directions and parametric values.  

The simulated significant wave height were higher for north wind than for south wind for 

the same wind speeds and bottom friction coefficient (Figure I-6). Also, higher wind speeds 

resulted in higher wave height for the same bottom friction coefficient. Figure I-7 shows that 

increase in bottom friction coefficient (Cjon) did not increase wave growth (significant wave height) 

for the same wind speed and direction. Also, there is no significant wave growth in the absence of 

wind. This shows that the wave growth in the shallow Nueces Bay is primarily dependent on wind.  
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Figure I-6. Effect of wind direction on wave growth for different wind speeds for swell (Cjon = 

0.038 m2s-3) and fully developed (Cjon = 0.067 m2s-3) wind conditions, (a) From north, (b) From 

south. 
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Figure I-7. Effect of wind speeds and directions on wave growth for (a) Swell conditions (Cjon = 

0.038 m2s-3) and (b) Fully developed wind conditions (Cjon = 0.067 m2s-3).  
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9.2 Model Calibration and Validation  

9.2.1 For the period between August 2016 and August 2020 

Delft3D Flow-Wave coupled model was calibrated and validated for water levels with 

daily simulated outputs at NOAA station ID#8775244 (Figure I-3), using historical water levels, 

from August 2016 to August 2020 (Figure I-8). During the calibration from August 2016 to August 

2018, the statistical indicators NSE, r2, PBIAS and RSR yielded values of 0.93, 0.68, 4.39% and 

0.27, respectively. During validation, the statistical indicators NSE, r2, PBIAS and RSR yielded 

values of 0.94, 0.86, 1.41% and 0.24, respectively. Figure I-8b shows the plot of simulated water 

levels versus the observed water levels during calibration and validation. The plot also shows that 

the regression line for calibration and validation passed through the origin with r2 values of 0.68 

and 0.86, respectively. Statistical analyses for model’s goodness-of-fit and error indices showed 

‘very good’ performance ratings (Table I-9).  
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Figure I-8. a) Time plot of observed and simulated water levels at NOAA station (ID#8775244), 

and b) Plot of simulated and observed water levels during calibration and validation. Water level 

datum is the mean sea level (MSL). 
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Table I-9. Performance rating of Delft3D Flow-Wave coupled model’s calibration and validation 

using simulated and observed water levels data at NOAA station ID # 8775244. 

Statistical 

indicators Calibration 

Performance 

rating* Validation 

Performance 

rating* 

NSE 0.93 very good 0.94 very good 

r2 0.68 very good 0.86 very good 

PBIAS 4.39% very good 1.41% very good 

RSR 0.27 very good 0.24 very good 

*(Moriasi et al., 2007) 

 

Figure I-9a shows that the simulated daily variations of TN provide more information for 

the time periods (on average, at 4 months intervals) in between the observed TN values. To allow 

for direct comparisons between the simulated and observed TN values, simulated TN values for 

the dates when the observed data were available were extracted from the daily simulated output 

(Figure I-9b). Data shown in Figure I-9b were then used in statistical analyses to quantify the 

calibration and validation performance. During calibration from August 2016 to August 2018, the 

statistical indicators NSE, r2, PBIAS and RSR yielded values of 0.99, 0.92, 0.75% and 0.05, 

respectively. During validation from September 2018 to December 2019, the statistical indicators 

NSE, r2, PBIAS and RSR yielded values of 0.99, 0.92, 4.05% and 0.08, respectively. Figure I-9c 

shows the plot of simulated TN versus the observed TN during calibration and validation periods. 

The plot also shows that the regression line for calibration and validation passed through the origin 

with r2 values of 0.92 for both calibration and validation. Statistical analyses showed ‘very good’ 

performance ratings during calibration and validation (Table I-10).  
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Figure I-9. a) Time-series plot of observed and simulated daily total nitrogen (TN, mg/L) at 

TCEQ station ID# 13422, b) Plot of observed and simulated TN at available historical dates, and   

c) Plot of simulated versus observed total nitrogen (TN, mg/L) during calibration and validation. 
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Table I-10. Performance rating of model calibration and validation for total nitrogen (mg/L). 

Statistical 

indicators Calibration 

Performance 

rating* Validation 

Performance 

rating* 

NSE 0.99 very good 0.99 very good 

r2 0.92 very good 0.92 very good 

PBIAS 0.75% very good 4.06% very good 

RSR 0.05 very good 0.08 very good 

*(Moriasi et al., 2007) 

 

Similar to Figure I-9, Figure I-10a shows that the daily simulation output provides more 

variations of chl-a in between the chl-a measurement dates. The statistical analyses for the dataset 

extracted from daily simulations for the dates when the observed data were available indicate NSE, 

r2 and PBIAS values of 0.75, 0.88 and 13.64%, respectively, during model calibration (Figure I-

10b). During validation from September 2018 to August 2020, the statistical indicators NSE, r2 

and PBIAS yielded values of 0.72, 0.74 and 4.03%, respectively. Figure I-10c shows the plot of 

simulated versus observed chl-a, which showed that the regression line for calibration and 

validation passed through the origin with r2 values of 0.88 and 0.74, respectively. Statistical 

analyses for goodness-of-fit and error indices showed ‘very good’ to ‘good’ performance ratings 

during calibration and ‘good’ to ‘satisfactory’ performance ratings during validation (Table I-11).  
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Figure I-10. a) Time-series plot of observed and simulated daily chlorophyll-a (µg/L) at TCEQ 

station ID # 13422, and station 4, b) Plot of observed and simulated chl-a at historical observed 

chl-a dates, and c) Plot of simulated versus observed chl-a (µg/L) during calibration and 

validation. 
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Table I-11. Performance rating of model calibration and validation for chlorophyll-a (µg/L). 

Statistical 

indicators Calibration 

Performance 

rating* Validation 

Performance 

rating* 

NSE 0.71 good 0.53 satisfactory 

r2 0.88 good 0.74 good 

PBIAS 13.64% very good 4.03% very good 

*(Moriasi et al., 2007) 

 

9.2.2 For the period between October 01st, 2016 to November 30th, 2016 

High temporal resolution data at 60 minutes interval were extracted for the period between 

October 01st, 2016 and November 30th, 2016 to account for the diurnal effects, hydrodynamics, 

and growth of algae in Nueces Bay. Figure I-11a shows the model calibration and validation results 

for water levels. The model was calibrated and validated with ‘good’ performance rating with r2 

values of 0.96 for both calibration and validation and NSE values of 0.67 and 0.87 for calibration 

and validation, respectively. Figure I-11b shows the regression line passed through the origin with 

r2 values of 0.96 for both calibration and validation. 

Figure I-12 shows the simulated 1-hour and 24-hour (daily) chlorophyll-a concentrations 

at TCEQ station ID#13422 (TCEQ 13422) and station # 06 from October to November 2016. The 

plots show the difference between the hourly and daily variations of algal concentrations during 

the algal blooms period. The 1-hour data outputs showed detailed variations in the algal 

concentrations within a day, where the variations of the algal concentrations are indicative of the 

diurnal patterns of algal growth, respiration, and mortality.  



58 

 

 

 

Figure I-11. a) Simulated and historic daily tide/water level at NOAA station ID#8775244, and 

b) Plot of simulated and observed water levels. Water level datum is mean sea level (MSL).  
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Figure I-12. Simulated 1-hour and daily (or 24-hr) chlorophyll-a (chl-a) concentration at a) 

TCEQ 13422, and b) Station 6. 

 

9.3 Sensitivity Analyses 

Figure I-13 shows the plot of sensitivity of different parameters in response to algal growth 

corresponding to different percentage changes of the input parameters from their base values 

(values of parameters after calibration). Table I-12 shows the numerical sensitivity of the model 

parameters on algal growth. Local sensitivity analyses were performed by changing one of the 

parameters to 120%, 150% and 180% from its calibrated base values, while keeping all the other 

parameters constant. Results show that temperature (T) and maximum production rate (MPR) are 

the most sensitive parameters with average sensitivities of 105 and 74, respectively. Temperature 

of the water impacts the rate of reactions and reaction kinetics, growth of algae and respiration. 

The maximum production rate (MPR) is dependent on factors such as sunlight and heat flux or 
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exchange, temperature, pH and salinity. The respiration rates depend on the availability of 

dissolved oxygen as well (Alosairi and Alsulaiman, 2019; Deltares, 2018c; Jian et al., 2014; Mao 

et al., 2015; Schladow and Hamilton, 1997; Xu et al., 2017). 

 

 

Figure I-13. Sensitivity of different parameters of high temporal resolution algal model.  

 

Table I-12. Sensitivities of the Delft3D WAQ model parameters at high temporal resolution. 

  % of base value  

Rank Description of Parameters 120% 150% 180% Average 

1. Temperature, T 2.38 3.99 308.39 104.92 

2. Maximum Production Rate, MPR 2.38 8.71 217.43 76.17 

3. Half-saturation constant, KN,P 4.83 1.98 1.24 2.68 

4. Mortality Rate Constant, MRC 2.38 1.90 1.22 1.83 

5. Maintenance Respiration Rate, MRR 2.38 1.89 1.22 1.83 

6. Growth Respiration Factor, GRF 3.10 1.37 0.59 1.69 

7. Temperature coefficient for growth, TCG 2.38 0.95 0.59 1.31 

8. Temperature coefficient for respiration, TCR 2.38 0.95 0.59 1.31 
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9.4 Model application 

9.4.1 Spatial variations of algal growth and total nitrogen concentrations during an algal 

blooms event 

Figure I-14 shows the simulated daily algal concentration (chl-a, µg/L) at the six 

monitoring stations between October 2016 and August 2020. The algal concentrations near the 

stations # 5 and # 6 were around and/or below 20 µg/L during October 2016 and for the whole 

simulation period (August 2016 to August 2020). 20 µg/L is the average threshold chlorophyll-a 

concentration for eutrophication (Sheldon & Alber, 2011). Station 6 is in the vicinity of the 

confluence of Nueces Bay and Corpus Christi Bay where there are tidal exchanges, hydrodynamics 

and mixing with Corpus Christi Bay (Figure I-3). Station 5 is to the west end of the model domain 

(Figure I-3) enclosed by land-water boundaries and a small open boundary (Nueces River-Bay 

confluence) to its south. The depth averaged velocity vectors plots showed that there was relatively 

higher mixing at station 5 (Figure I-15), which yielded in lesser algal growth. Stations 1 to 4 

showed increased growth of algae, and crossed the threshold concentration for eutrophication, 

during the HAB event in October 2016 (TPWD, 2019a). As the location of the station moves 

towards the confluence of Nueces and Corpus Christi Bay, the overall algal growth decreases from 

station 1 to station 4 (Figure I-14a). At the confluence (station 6) the algal growth/concentration 

was limited by the relatively higher hydrodynamics activities and mixing as observed from Figure 

I-15. Thus, at stations 5 and 6, the velocity vectors were in haphazard/random motion (Figure I-

15), that is, there has been mixing and momentum exchanges within the waters which limited algal 

growth and yielded lower algal concentrations. Whereas stations 1 through 4 exhibited uniform 

motion, lower mixing and yielded in higher algal concentrations. 
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Figure I-14. Simulated daily algal concentration (chlorophyll-a, chl-a, µg/L) at stations # 01 - # 

06, a) from October 2016 to November 2016, and b) from January 2017 to December 2017, c) 

January 2018 to December 2018, d) January 2019 to August 2020. 
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Figure I-15. Depth averaged water velocity variations simulated for Oct 11, 2016 at 12:00 am for 

a) all six stations, and b) magnified velocity vectors at each station. 

  



64 

 

Figure I-16 and I-17, shows the spatial variations of total nitrogen (mg/L) and chlorophyll-

a (µg/L) concentrations throughout Nueces Bay, before (October 05th, 2016), during (October 13th, 

2016) and after (October 22nd, 2016) the algal blooms event. Stations with high hydrodynamics 

and mixing conditions (stations 5 and 6) had lower chlorophyll-a concentration than stations that 

experienced lower hydrodynamics and mixing (stations 1-4). The insignificant changes in 

chlorophyll-a concentrations (Figure I-167b and I-17c) were suggestive of low hydrodynamics and 

mixing at station 1 (at the confluence of Nueces River and Nueces Bay). During the month of 

October 2016, the maximum inflow was 19.7 m3/s (October 05th 2016) and a minimum of 0 m3/s, 

with an average of 5.4 m3/s. During HAB event (October 09 to 11) the daily inflow rate was about 

5.0 m3/s on average. From Figures I-16-17, it is evident that the inflows from Nueces River had 

little impact on the hydrodynamics activities at the confluence or at the discharge point of Nueces 

River into Nueces Bay and facilitated the growth of algae during the algal blooms event in October 

2016.  
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Figure I-16. Spatial variations of total nitrogen concentration, a) before algal blooms, b) during 

algal blooms, and c) after agal blooms. 
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Figure I-17. Spatial variations of chlorophyll-a concentration, a) before algal blooms, b) during 

algal blooms, and c) after agal blooms. 
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Figure I-18a shows that as algal growth increased, the total nitrogen concentration 

decreased, which can be indicative of the use of nitrogen during the growth of algae and 

conversely, as total nitrogen increases the algal growth decreases (indication of addition of 

nutrients from detrital organic matter) (Deltares, 2018c; Vaz et al., 2019). Figure I-18b showed 

high correlation between the total nitrogen and algal concentration at stations 1-4 while weak 

correlations were observed at stations 5 and 6. Recalling that stations 1-4 have low hydrodynamic 

activities while stations 5-6 have higher hydrodynamic activities as shown in Figure I-15. Thus, 

the correlations between the total nitrogen and algal concentration are closely related to the 

hydrodynamic conditions at the observation/monitoring locations.   
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Figure I-18. a) Correlations of simulated algal concentration and available total nitrogen, and b) 

plot of algal (µg/L) and total nitrogen concentration (mg/L). 
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9.4.2 Scenario analysis on effects of inflows, wind speeds, temperature and nutrient loads 

  Figure I-19a shows that high inflows (with high total nitrogen and high chlorophyll-a 

inflows) reduced the algal growth in the Bay. Figure I-19b shows that with low flow and high 

chlorophyll-a concentration, there were no change on the algal growth. Figure I-19c shows that 

high inflows (with low total nitrogen and low chlorophyll-a) significantly reduce the algal 

concentration in the bay. Figure I-19d shows that algal growth increases due to high nutrient and 

chlorophyll-a loads at base inflows. This indicates that high nutrient and/or chlorophyll-a 

concentration can increase the algal growth and induce greater diversity (Yamamoto and Hatta, 

2004). Figure I-19e shows that at low temperatures the algal growth is significantly reduced while 

at high temperatures the algal growth increases. Figure I-19f show that at high wind speed the algal 

growth is significantly reduced while at low wind speed the algal growth increases. The base model 

is the calibrated model. From October to November 2016 there was a maximum and minimum 

inflow of 19.7 (October 05th) and 0.0 m3/s, respectively, and a mean of 2.7 m3/s. The high/low 

values of inflows, total nitrogen, chlorophyll-a, wind speed and temperature, used in scenario 

simulations, are tabulated in Table I-8. 
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Figure I-19. a to f) Effect of various factors on algal growth (chl-a, µg/L).   
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10. CONCLUSIONS AND DISCUSSION 

10.1 Summary and Conclusions 

This study focused on setting up a model to simulate algal growth in Nueces Bay. The 

model showed very good performance ratings during calibration and validation of water levels, 

total nitrogen concentration and algal concentrations (Figure I-8-Figure I-10) with NSE and r2 > 

0.75 and PBIAS < 15%. The model was able to simulate the algal blooms event (Figure I-14a and 

19a).  

From the Delft3D-Wave standalone simulations, it was found that wave growths in Nueces 

Bay were dominated by wind and not by tidal forces (Figure I-7), that is, less than one foot of 

waves were formed with tidal forcing in the absence of wind.  

Figure I-20a shows the wind-rose diagram for wind speed and wind directions during the 

month of October 2016, expressed as a percentage of all wind speeds for the whole month.  

Figure I-20b shows the wind-rose diagram for wind speeds from August 2016 to August 

2020 expressed as a percentage of all wind speeds during the whole period. Table I-13 shows the 

statistics for the wind speeds for October 2016 (during the HAB event) and for the whole 

simulation period. From  

Figure I-20a and Table I-13, it can be seen that the wind speeds were < 6 mph (during 

October 2016) which is relative low, compared to wind speeds of other periods where average 

wind speed is around 10 mph (August 2016-2020). This indicates that there was little wave growth 

due to wind and thus lower hydrodynamics and mixing in the Nueces Bay during the HAB event. 

From Figure I-19f, it is evident that low wind speed (< 4 mph) facilitated algal blooms than high 

winds speed. 
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Figure I-20. a) Wind speed (as a percentage of all wind speeds) and wind directions for the 

month of October 2016, and b) Wind speeds (as a percentage of all wind speed) and wind 

directions between August 2016 to August 2020. 
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Table I-13. Wind speed statistics for whole simulation period of August 2016 to August 2020 

and during HAB, October 2016 

Wind speeds, mph August 2016-2020 October 2016 

Average speed, mph 10.42 4.46 

Maximum speed, mph 58.69 5.60 

Minimum speed, mph 0.00 0.00 

 

Simulated hourly algal concentrations showed variations within a day reflecting the effect 

of sunlight, temperatures and other factors, on algal growths, mortality and respirations (Figure I-

12). Sensitivity analyses showed that water temperature had the most impact on the simulated algal 

concentrations followed by the maximum production rate of algae (Sensitivity ≥ 50) (Figure I-13, 

Table I-12). This indicates that with the current global warming trends, that is, increasing 

temperatures, HABs are likely to occur at higher concentrations and frequencies in coming years. 

The maximum production rate is a function of nutrient availability, dissolved oxygen, radiation 

flux, temperature, pH and salinity (Vaz et al., 2019). This cycles back to temperature rise, which 

can affect the dissolved oxygen concentrations, pH, and the maximum production rate of algae. 

From spatial variations it was observed that as the monitoring stations moved from the 

confluence of Nueces River and Nueces Bay (NR-NB) to the confluence of Nueces Bay and 

Corpus Christi Bay (NB-CCB), the hydrodynamic activities and mixing relatively increased, with 

high activities at NB-CCB confluence (Figure I-14). The Nueces Bay exhibited uniform behavioral 

pattern except at the vicinity of the confluences of NR-NB and NB-CCB. Higher algal (≥ 100 

µg/L) and total nitrogen concentration (3.0 mg/L) inflows from Nueces River increased the algal 

concentration in Nueces Bay and have the potential to induce algal blooms (Figure I-19). 

Simulations at high wind speed of about 60 mph showed that the algal growth and concentrations 

decreased (≤ 10.0 µg/L) (Figure I-19). Except during the HAB event in October 2016, the algal 

concentrations remained below 20 µg/L throughout the simulation period, indicating that Nueces 

Bay was not eutrophic other than in October 2016 (Figure I-14). High freshwater inflows (≥ 80 

m3/s) increased hydrodynamics and mixing and reduced the algal growth. Thus, it is evident that 

freshwater inflow rates are an essential component in the health of the ecosystem of the bay and 

prevention of algal blooms (Figure I-19). Simulations also showed that chlorophyll-a or algal 

inflows from Nueces River increased algal concentrations in the bay (Figure I-19).  
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Algal growth is a complex dynamic process which is dependent on many biotic and abiotic 

factors, which in turn is dependent on each other (Blevins, 1997; Powley et al., 2017b; Vaz et al., 

2019). For example, algal growth is dependent on sunlight, production rates, respiration rates, 

which in turn is dependent on water temperatures and dissolved oxygen as well. This study made 

an effort to incorporate the key processes identified based on literature reviews and focused on 

freshwater inflows and nitrogen as the limiting nutrient in relation to algal growths. Although there 

are rooms for improvement to the model, this model can serve as a reconnaissance study or as a 

tool to assess the algal biomass in the Nueces Bay using the sparingly available water quality data 

for Nueces Bay. This model can also be used to simulate algal growths in Nueces Bay for different 

environmental conditions which can be anticipated to be onset by anthropogenic activities and 

climate changes. This in turn can help coastal managers to take necessary actions to mitigate or 

prevent any environmental hazards. 

 

10.2 Discussion  

 This study included a range of factors and processes to investigate the hydro-, nitrogen and 

algal dynamics in relation to algal blooms in Nueces Bay. Algal growth is a complex and dynamic 

process (Blevins, 1997; USGS, 2004) with many factors governing its growth. There is room for 

improvements to this model since there are few processes which this study did not investigate. For 

example, the current model did not investigate the different species of algae responsible for HAB 

but rather focused on overall algal biomass. The advantage of this approach is to provide a 

reconnaissance study to allow the evaluation of factors underlying algal growth. Thus, the model 

developed in this study can be used to set guidelines to evaluate the criteria of algal growth in 

estuarine, for example, nutrient loads, temperature, and freshwater inflows. The disadvantage of 

this approach is that, not all algae produces toxins responsible for harmful effects caused during 

blooms. There are certain species of algae, for example, K. Brevis, which is predominant during 

“red tides” and releases harmful toxins (Magaña et al., 2003). Apart from the presence of harmful 

species/toxins, algal blooms or eutrophication itself (in the absence of toxic species) can cause 

environmental damage, by exerting  more oxygen demands (during and after blooms), reducing 

light penetration, and taking up nutrients during blooms (EPA, 2000; Katin et al., 2019; Kristin, 

2011; Ritter and Montagna, 1999). Therefore, looking into different species during algal blooms 
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can add further knowledge of the key species responsible for toxin releases, toxin concentrations 

and their impacts on the environment and human health.  

From scenarios analyses (Figure I-19), it was observed that high nutrient (3.0 mg/L) 

inflows increased algal growth. High algal inflows (or chlorophyll-a ≥ 100 µg/L) from Nueces 

River to the Nueces Bay also increased the algal growth in Nueces Bay. High nutrient inflows are 

the results of anthropogenic activities, for example, chemical fertilizers in agricultural runoffs and 

farm applications, which is expected to increase in the future to meet food demands (Alexandratos, 

2012). This increase in nutrients in the surface runoff eventually reaches the streams and rivers. 

Stream and rivers are primarily phosphorous limited (Turner and Chislock, 2010; Turner et al., 

2015) and can lead to increased algal growth from these nutrients. This high concentration of algae 

in the river is carried to the bay, together with nutrients, act as a pulse input to the bay which can 

promote diversity and growth in phytoplankton or algae (Bowman et al., 2008; Ciampitti and Vyn, 

2014; Ruddy et al., 2006; Smil, 1999; Stewart, et al., 2005, 2005; Yamamoto and Hatta, 2004). 

Thus, continuous high freshwater inflows are vital to estuarine health, as it can reduce the 

concentration of nitrogen algae reaching the bay. This, in turn, can diminish the effect of pulse-

input and reduce the biodiversity and algal growth. Also, floating surface “skimming” barriers 

could be installed at the Nueces River at the upstream of confluence (Nueces River – Nueces Bay) 

and also along the Nueces Bay causeway to remove and harvest algae from the surface and 

preventing algal inflows in Nueces Bay and Corpus Christi Bay. This could potentially reduce the 

induction of algal growth/blooms in the bays. The harvested algae can also be utilized in the 

production of biofuels using this process. “No Harm” solutions (Levy, 2020) can be used to remove 

algae and nutrients from water bodies, where the algae harvested for biofuel production as well. 

These methods could be utilized in rivers to prevent HABs in bays, and in lakes, bays, and estuaries 

to remove surface algae in existing HABs region.  

Algal growth near station 6 exhibited large fluctuations and low algal concentration due to 

the hydrodynamics and mixing with the Corpus Christi Bay (Figure I-14-18). Stations 1-4 showed 

lower hydrodynamics activities and high algal growth or concentrations, indicating that higher 

hydrodynamics and mixing is also essential to prevent potential algal blooms and avoid 

environmental hazards. The tidal exchange of algae from Nueces to Corpus Christi Bay can also 

act as a nutrient and algal pulsed input for Corpus Christi Bay, which can favor diversity in algal 

species and promote growth of algae in Corpus Christi Bay (Yamamoto and Hatta, 2004). Since 
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Nueces Bay is relatively shallow, the mixing in the waterbodies can be increased by promoting 

recreational activities, for example, speed-boat riding, jet skiing and other similar activities, 

especially from September to December (since, historically, algal blooms were observed during 

this period). This can potentially prevent algal blooms in the bay. 

Station 5 showed trends of high mixing with low algal concentrations. Since station 5 is 

near the model’s enclosed land-water boundaries, where there are marshes in the proximity, the 

velocity vector lines exhibited that there were intermixing within the waters causing mixing and 

resulting in lower algal concentrations (Figure I-15). Marshes can affect the hydrodynamics and 

algal growth due to its shallow depth and high thermal stratification. Due to the presence of high 

concentrations of aquatic species in marshes, the dissolved oxygen is usually low (Blevins, 1997). 

The deficiency of dissolved oxygen is met by denitrification of nitrate for respiration and 

maintenance of the species. Nitrogen through atmospheric deposition (dry and wet) has the 

potential to induce algal growth in the marshes as well. Thus, the processes and compartments of 

nitrogen in marshes and/or wetlands are complex (Blevins, 1997; USGS, 2004). The effect of the 

marshes and its nutrient cycling were not studied in the current model. Thus, marshes and its effect 

on nitrogen cycling can be added to the model to further improve its performance in simulating 

algal concentrations and blooms.   

The model can also be refined by including sediments and nutrients transported through 

sediments, which can also be responsible for algal blooms. Nitrification, denitrification, and 

nutrient transport through sediment is important in coastal water algal blooms (Chen and Mynett, 

2006). Algae prefers ammonia over nitrate (Deltares, 2018a) during growth. Since, this study 

focused on the total nitrogen concentrations, the nitrogen species and its factor in algal growth 

were not investigated. Addition of nitrogen through atmospheric deposition and tidal exchanges 

with Corpus Christi Bay were not studied. About 25 to 33% of net tidal entrainments and inflows 

occur through the adjacent bays and almost 8% of total nitrogen is deposited through dry and wet 

atmospheric deposition in the Nueces Estuary, although, about 40% of the nutrient is lost through 

denitrification from Nueces Bay (Brock, 2001). Thus, the integration of atmospheric deposition 

and speciation of total nitrogen can also improve the model’s accuracy in simulating algal growth.  

The model could be improved if more data, for example, nutrients and chlorophyll-a, were 

available at a finer temporal resolution, especially before, during and after an algal bloom was 

observed. Also, data at different points in space of Nueces Bay and Corpus Christi Bay could help 
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further refine the model in both space and time. These could be achieved if remote sensing devices 

could be employed to measure/record different water quality quantities. Observed data points for 

total nitrogen and chlorophyll-a were sparingly available (in terms of temporal resolution). Since 

collection and laboratory testing for nutrients and chlorophyll-a could be economically unfeasible,  

application of Bootstrap method using sample/learning data and accounting for uncertainties, can 

generate large datasets which can be used in calibration and validation, in situations where few 

data points are available (Jones et al., 1996; Lee et al., 2019). The high temporal resolution data is 

desirable because algal growth is a dynamic and exponential process happening within minutes, 

and to understand this process in-depth, large dataset would facilitate in greater accuracy of models 

and understanding. Thus, implementation of Bootstrap method using historical data to generate 

(estimate) large dataset and using it in model simulation and calibration can have significant 

impact on model’s refinements and improvements, as well as understanding the processes.  
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PART II. MODELING NITROGEN LOADING AND ITS RELATIONSHIPS TO 

FRESHWATER INFLOWS FROM NUECES RIVER BASIN  

 To better understand the relationships between anthropogenic activities, hydrologic 

processes and water quality changes under a changing climate, this part of the project focused on 

the examination of the relationship between freshwater inflows and nitrogen loadings, nitrogen 

species and DO concentrations. The SWAT (Soil and Water Assessment Tool) model was 

employed to simulate the hydrological and transport processes in the Nueces River Basin (NRB). 

The sensitivity of the input parameters of the model for simulating stream flow and total nitrogen 

loadings was also examined.  

1. MODEL DESCRIPTION 

The SWAT model was set up using the integrated ArcGIS geodatabase, Digital Elevation 

Models (DEM), raster store master database and ArcSWAT based on work conducted by fellow 

researcher (Mr. Siavash Bassam, PhD candidate at Texas A&M University-Kingsville) and funded 

by the City of Corpus Christi (Bassam and Ren, 2018). A DEM model of 100 m x 100 m grid was 

used. Automatic watershed delineation via ArcSWAT was used for the NRB. The total area of the 

watershed simulated is 1,029,071 km2 (Figure II-1). A total of 129 sub-basins with 3387 hydrologic 

response units (HRUs) covering the entire watershed (Figure II-2) were used. Each HRU is 

approximately gridded as 17.5 km x 17.5 km. 

   

Figure II-1. Nueces Watershed (Source: ArcSWAT and Google Pro). 
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Figure II-2. Nueces Watershed showing sub-basins (Source: ArcSWAT). 

 

“WGEN_CFSR_World_1979_2014” Global weather database was integrated in the 

statistical “Weather Generator Data” of the SWAT model to allow statistical forecasting of the 

model up to the year 2100. The CFSR was designed and executed as a global, high resolution, 

coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of 

these coupled domains over the period 1979-2014 (global weather, TAMU, 

http:\\globalweather.tamu.edu).  

 

To simulate the recent events and years (2011 -2019), the weather data including wind 

speed, rainfall, temperature, relative humidity, and solar radiations were obtained from existing 

datasets from 14 different stations (Table II-1, Figure II-3). The datasets were collected from NCEI 

(National Centers for Environmental Information) of NOAA (National Oceanic and Atmospheric 

Administration) and distributed among the sub-basins using Theissen polygon method (Figure II-

4). Atmospheric deposition, soil data, land use data, sub-basin and drainage data, groundwater 

data, water use data, soil water quality data, discharge data, fertilizer application, and stream water 

quality data were used to simulate flows and nutrients in the surface runoff.  
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Table II-1. List of stations used in SWAT model for collecting weather data. 

SL NO STATION_ID (NCEI) STATION NAME 

1 WBAN:12932 ALICE INTERNATIONAL AIRPORT, TX US 

2 WBAN:00127 BEEVILLE MUNICIPAL AIRPORT, TX US 

3 WBAN:12947 COTULLA LA SALLE CO AIRPORT, TX US 

4 WBAN:00270 FAITH RANCH AIRPORT, TX US 

5 WBAN:12985 GARNER FIELD AIRPORT, TX US 

6 WBAN:12962 HONDO MUNICIPAL AIRPORT, TX US 

7 WBAN:12907 LAREDO INTERNATIONAL AIRPORT, TX US 

8 WBAN:12974 ORANGE GROVE, TX US 

9 WBAN:00130 PLEASANTON MUNICIPAL AIRPORT, TX US 

10 WBAN:12984 ROBSTOWN NUECES CO AIRPORT, TX US 

11 WBAN:12909 SAN ANTONIO KELLY FIELD AFB, TX US 

12 WBAN:12970 SAN ANTONIO STINSON MUNICIPAL AIRPORT, TX US 

13 USW00012924 CORPUS CHRISTI INTERNATIONAL AIRPORT, TX, US 

14 72236323098 ROCKSPRINGS, TX, US 

 

 
Figure II-3. Nueces watershed with dropped pins showing the NCEI stations used (Source: 

ArcSWAT, NCEI and Google Pro). 

 



81 

 

 
Figure II-4. Nueces watershed showing contribution of different weather station after Theisen 

polygon distribution. 

 

Table II-2 tabulates the key model input parameters and their initial values used in SWAT 

to simulate monthly average flow and monthly average total nitrogen from the NRB. The model 

included inflows from different points along the Nueces river. It also incorporated the two 

reservoirs of the watershed as shown in Figure II- 5. 
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Table II-2. Key model input parameters for simulation and calibration of flow and total nitrogen. 

No. Input 

Parameters 

Description of Parameters Initial 

Values 

References 

and Sources 

1 CN2 SCS runoff curve number. SCS defines three antecendent 

moisture conditions. i. dry (wilting point), ii. Average 

moisture, iii. Wet (field capacity). CN2 is the moisture 

condition II curve number 

0.1 

(Abbaspour et 

al., 2015a; 

Arnold et al., 

2011; 

Brouziyne et 

al., 2017) 

2 SURLAG Surface runoff lag coefficient (days) 5.00 

3 OV_n Mannings 'n' value for overland flow 0.02 

4 EPCO Soil evaporation compensation factor. It is used to meet 

the potential water uptake compensated by the lower 

layers of soil 

0.50 

5 ESCO Plant uptake compensation factor. This coefficient is used 

to modify depth distribution used to meet the soil 

evaporative demand. 

0.50 

6 ALPHA_BF Baseflow alpha factor (days) relating to goundwater flow. 0.01 

7 GW_DELAY Groundwater delays (days) 5.00 

8 GWQMN Threshold depth of water in the shallow aquifer required 

for return flow to occur (mm) 
10.00 

9 SOL_AWC Available water capacity of the soil layer (mm H20/mm 

soil) 
0.25 

10 SOL_K Saturated hydraulic conductivity (mm/hr) 5.00 

11 RCN Concentration of nitrogen in rainfall (mg N/L) 1.00 

(Abbaspour et 

al., 2015b; 

Arnold et al., 

2011; Jung & 

Kim, 2017; 

Wu & Chen, 

2009) 

12 CDN Denitrification exponential rate coefficient; to control the 

rate of denitrification. 
1.4 

13 CMN Rate factor for humus mineralization of active organic 

nutrients (N & P) 
0.0003 

14 N_UPDIS Nitrogen uptake distribution parameter.  20.00 

15 NPERCO Nitrate percolation coefficient; controls the amount of 

nitrate removed from the surface layer in runoff relative to 

the amount removed via percolation. NPERCO of 0.0 

means that the concentration of nitrate in the runoff 

approaches 0 & 1.0 means that the surface runoff has the 

same conc. of nitrate as the percolate. Default = 0.20 

0.20 

16 RSDCO Residue decomposition coefficient; the fraction of residue 

which will decompose in a day assuming optimal 

moisture, temperature, C:N ratio and C:P ratio. Default = 

0.05. 

0.05 

17 BC1 Rate constant for biological oxidation of NH4 to NO2 in 

the reach (day-1) 
0.10 

18 BC2 Rate constant for biological oxidation of NO2 to NO3 in 

the reach (day-1) 
0.10 

19 BC3 Rate constant for hydrolysis of organic N to NH4 in the 

reach (day-1) 
0.02 

20 BC4 Rate constant for organic phosphorous mineralization at 

20 C (day-1) 
0.35 
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Figure II-5. Location of the two reservoirs (sub-basins 54 and 95, respectively as highlighted). 

 

The model inputs also include weather data, that is, rainfall, temperature, and wind speed, 

obtained from available stations and the relative humidity and solar radiation obtained using the 

weather generator. Average monthly flow recorded at the USGS station ID # 08211500 was used 

to represent the average flow coming from the entire watershed. Average monthly nutrient load 

discharge recorded at the TCEQ station ID # 12960 was used to represent the average monthly 

nutrient load discharge input from the entire watershed. TCEQ station 12960 (near the confluence 
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of Nueces Bay and Nueces River) is 11.6 km downstream of USGS station 08211500 (Figure II-

6). Both these stations were used because they are at the most downstream points of the watershed. 

Geographically, the entire Nueces watershed converged into a single stream, after Calallen Dam, 

and these stations are located on that single stream. Thus, data from these points were assumed to 

be representative of the flow and nutrient loads of the entire watershed before they are discharged 

into Nueces Bay. These stations were chosen because USGS 08211500 did not have any nutrient 

data (thus flow data was used) and TCEQ 12960 did not have any flow data (thus nutrient data 

was used). Thus, a combination of data from these two stations were used for calibration and 

validation of the model. It was also assumed that from USGS 08211500 to TCEQ 12960, there 

were little to no contribution of additional flow and nutrients to the Nueces River. 

 

 

 

Figure II-6. Section of Nueces watershed showing the two stations USGS 08211500 and TCEQ 

12960 used for this study. 
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2. MODEL CALIBRATION, VALIDATION, AND APPLICATION 

Performance of model calibration for flow is evaluated using Nash-Sutcliff Efficiency 

(NSE) coefficient and coefficient of determination (r2) as goal functions as described in Part I. 

Guidelines to test model performance using NSE are from Moriasi et al. (2007) (see Table I-6). 

For total nitrogen calibration and validation, coefficient of determination (r2) was used as goal 

function.  After model calibration, the calibrated model was run to obtain inflows and total nitrogen 

data for the period of January 2011 to December 2019.  The data were plotted to examine the 

relationship between freshwater inflows and nitrogen loadings, nitrogen species and dissolved 

oxygen loadings/concentrations. 

 

3. SENSITIVITY ANALYSIS 

Global Sensitivity analysis was conducted via multiple regression analysis on input 

parameters to observe model’s response and parameter sensitivity. t-stat which measures the 

precision with which the regression coefficient is measured (coefficient of parameter/standard 

error) was calculated. Large t-stat values indicate that the parameter is sensitive to the model. A 

large t-stat corresponding to a low p-value (p<0.05) indicates that the variable is having an effect 

on the model’s response with 95% or more probability of correctness. t-stat and p-values were 

extracted using SWAT-CUP (SWAT-Calibration and Uncertainty Program). Parameters were 

ranked according to the t-stat and p-values.  

Local Sensitivity analysis was conducted by changing each parameter with respect to the 

calibrated values while keeping all other parameters constant, using Equation 26 (see Section 7.3 

of Part I). Relative impacts of each parameter on total sensitivity (percentage S) were calculated 

to rank the local sensitivities. 
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3. RESULTS 

3.1 Model calibration and validation of stream flow 

From Figures II-7 and 8, it was observed that the NSE and r2 for flow were found to be 

0.79 and 0.72, respectively, during calibration. Calibration period was from January 2011 to May 

2015 and validation period was from June 2015 to December 2018. For NSE value of 0.79, a “very 

good” performance can be rated for the model. During validation, NSE and r2 values of 0.72 and 

0.73, respectively, were observed which showed “very good” performance rating as well. CN2 

was found to be the most sensitive parameter during the peak flow calibration.  

 

 
Figure II-7. Time series of observed and simulated flows. 
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Figure II-8. Relationships between observed, calibrated, and validated flows.  

 

3.2 Model calibration and validation for total nitrogen 

From Figures II-9 and 10, it was observed that the NSE and r2 for total nitrogen were found 

to be 0.80 and 0.63, respectively, during calibration. Calibration period was from January 2011 to 

May 2015 and validation period was from June 2015 to December 2018. During validation, the 

NSE and r2 were 0.93 and 0.87, respectively. In both calibration and validation, the model showed 

“very good” performance ratings.  
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Figure II-9. Time series plot of observed and simulated total nitrogen. 

 

  
Figure II-10. Correlation between observed and simulated total nitrogen.  
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3.3 Effects of freshwater inflows on total nitrogen.  

Figure II-11 shows the time series plot of freshwater inflows with simulated total nitrogen 

loading and total nitrogen concentration. The alternative grey areas in the plot mark the ‘wet’ and 

‘dry’ seasons, where the lighter area represents ‘dry’ season and darker area represents the ‘wet’ 

season. It is observed that the total nitrogen loading increases with freshwater inflows. The total 

nitrogen concentration shows a seasonal variation where it increases during the ‘dry’ seasons and 

decreases during the ‘wet’ seasons.  

Figure II-12 shows the time series plot of total nitrogen, total Kjeldahl nitrogen (TKN), 

inorganic nitrate and nitrite and dissolved oxygen. The alternate grey and light areas represent the 

wet and dry seasons as in Figure II-11. It is observed that the TKN concentration increases with 

increase in total nitrogen and total nitrogen constitutes mostly of TKN. Also, TKN is higher during 

dry seasons than during wet seasons. Dissolved oxygen varied from 6.5 to 9.0 mg/L and it 

increased during wet seasons and decreased during dry seasons, indicating oxygen demands during 

the dry seasons. 
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Figure II-11. Time series plot of freshwater inflows (m3/s), total nitrogen loading (kg) and total 

nitrogen concentration (mg/L). 
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Figure II-12. Time series plot of freshwater inflows (m3/s) and seasonal variation of dissolved 

oxygen (DO, mg/L), total nitrogen (mg/L), total Kjeldahl nitrogen (mg/L), inorganic nitrate and 

nitrite (mg/L).  
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represent the dry and wet seasons. The two parts of total nitrogen, TKN and inorganic nitrogen, 

show seasonal variations in composition. During dry seasons, the TKN increases while the 

inorganic nitrogen decreases and vice-versa. Figure II-14 shows the relationship between 

freshwater inflows and TKN and inorganic nitrogen. 

 

 
Figure II-13. Time series plot of freshwater inflows (m3/s) and seasonal variation of total 

Kjeldahl nitrogen as percentage of total nitrogen and inorganic nitrogen (nitrate + nitrite) as 

percentage of total nitrogen. 
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Figure II-14. Relationship between freshwater inflows and TKN and inorganic nitrogen. 

 

3.4 Sensitivity analysis results for stream flow simulation 

 From global sensitivity analyses for average monthly flow, the parameters: SURLAG 

(surface runoff lag coefficient), GWQMN (ground water discharge minimum) and SOL_K 
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Table II-3. Global sensitivity analysis for flow. 
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From local sensitivity analyses (Table II-4) for average monthly flow, the parameters: CN2 

(SCS runoff curve number), OV_n (Manning’s n value for overland flow) and AWC (available 

water capacity of the soil layer) were found to be most sensitive (Table II-4). 

 

Table II-4. Sensitivity analysis for flow. 

 

3.5 Sensitivity analysis results for total nitrogen simulation 

From global sensitivity and local sensitivity analysis (Tables II-5 and 6) for average 

monthly total nitrogen, the parameter NPERCO (nitrate, as nitrogen, percolation coefficient) was 

found to be the most sensitive (Tables II-5 and 6).  
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Table II-5. Global sensitivity analysis for total nitrogen. 

 

Table II-6. Local sensitivity analysis for total nitrogen. 
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4. SUMMARY OF FINDINGS  

  The surface runoff (CN2, SURLAG) and overland Manning’s coefficient for flow (OV_n) 

were found to be the most sensitive parameters for the streamflow simulations. Nitrogen uptake, 

denitrification, nitrogen percolation and residual nitrogen coefficients (NUPDIS, CDN, NPERCO 

and RSDCO) are the most sensitive parameters for nitrogen loads. Total nitrogen transported 

through Nueces River increases with total freshwater flow and vice versa (r2 = 0.72). From 

September to February (dry season), proportion of TKN increased and inorganic (NO3
-+NO2

-) 

decreased, and the converse is true during wet season. Total nitrogen and inorganic (NO2
-+NO3

-) 

nitrogen increased with freshwater inflows (r2 = 0.72 and 0.70, respectively). The dissolved oxygen 

increased during wet seasons while it decreased during the dry seasons.  
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PART III. PUBLIC EDUCATION AND OUTREACH  

 Due to COVID-19, public education and outreach activities were limited. The following 

is a summary of the activities conduced:    

1) Presentations at the professional conferences:  

Two presentations were conducted at the AWRA 2020 Geospatial Water Technology 

Conference in August 2020. One focused on the SWAT model and one focused on the 

Delft3D model. The details are:  

• Rony, S.M.S.M., J. Ren, T. Sinha, E. Buskey, and T. Lynn, Nitrogen Loading and its 

Relationship to Freshwater Inflows and Algal “Blooms” from a Large Semi-Arid 

Watershed: A Modeling Study, AWRA 2020 Geospatial Water Technology 

Conference on “Complex Systems.”, Austin, Texas, August 4-13, 2020. 

• Rony, S.M.S.M., J. Ren, E. Buskey, T. Sinha, and T. Lynn, Modeling Nutrient and 

Algal Blooms Dynamics in Coastal Bays: A Case Study of Nueces Bay, Texas, AWRA 

2020 Geospatial Water Technology Conference on “Complex Systems.”, Austin, 

Texas, August 4-13, 2020. 

2) A 2-minute video for K-12 outreach was prepared. This short video will be posted in social 

media through TAMUK Department of Environmental Engineering. 

3) A recorded presentation about Part I of the project will be distributed through the South 

Texas Water Center group, which includes representatives from academic institutions, 

government agencies, regional/local communities, private industries, and NGOs in the 

South Texas region. The presentation video will also be posted on the Water Center website 

at http://www.tamuk.edu/engineering/departments/even/research/watercenter.html.  

  

http://www.tamuk.edu/engineering/departments/even/research/watercenter.html
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Part IV. SUMMARY OF FUTURE WORKS AND RECOMMENDATIONS 

1. The NB Delft3D model could be improved if more data, for example, nutrients and 

chlorophyll-a, were available at a finer temporal resolution, especially before, during and 

after algal blooms. Also, data at different points of Nueces Bay and Corpus Christi Bay 

could help further refine the model in both space and time. 

2. Remote sensing for collecting continuous data of water quality and inflows and integrating 

the data with online models can be developed and/or implemented to obtain real time status 

of algal concentrations and other parameters of water quality needed in the model 

simulation. 

3. Since wave development in Nueces Bay is dominated by wind, wind and wave data can be 

collected for future model calibration and validation at different points and regions within 

the Nueces Bay. 

4. The current NB Delft3D model focused on the overall production of the phytoplankton 

biomass, thus, different algal species were not investigated. Since toxins are released by 

certain species, which are often the dominant ones during an HABs, investigating algal 

species growth during HABs and species responsible for toxin releases would provide 

further understanding of the algal blooms.  

5. Freshwater inflows from Nueces River to Nueces Bay, not only bring in nutrients from 

Nueces River Basin, but also transport sediments. Since morphology and sediment 

transport were not included in the current model, nutrients transported through sediments 

and associated with sediment depositions were not investigated. Study of sediment 

transport and nutrient transport through sediments can also unlock new knowledges for 

algal blooms.  

6. An integrated model of the Nueces River Basin, Nueces Bay and Corpus Christi Bay would 

provide an in-depth insight of the nutrient transport and mechanisms of HABs. 

7. The bathymetric data used in this study was collected in 2008. Updated bathymetry data 

will be needed to further reduce the model uncertainty.  
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